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Abstract: We present two different approaches to apply deep learning to inverse design
for nanophotonic devices. First, we use a regression model, with device parameters as inputs
and device responses as outputs, or vice versa. Second, we use a novel generative model to
create a series of improved designs. We demonstrate them to design nanophotonic power
splitters with multiple splitting ratios. © 2020 The Author(s)

1. Introduction

Application of neural networks (NNs) to improve the automation of photonic device design has recently drawn in-
creased attention. In this paper, we show two major categories. First, we show examples of a deep neural network
(DNN) used as a regression model. A NN based forward modeling in conjunction with an optimization method
has been used for designing nanophotonic power splitters [1], nanophotonic mode converters [2], and optical at-
tenuators [3]. We describe examples of using DNNs for designing nanophotonic power splitters in forward design
and inverse design [4]. Second, we show an example of a DNN used as a generative model, which produces a set
of new designs which can satisfy the target performance better. Generative models have been recently used for
designing materials [5] and plasmonic devices [6, 7]. Here, we introduce a novel conditional variational autoen-
coder (CVAE) [8] combined with an adversarial network [9]. This is applied to a multi-level nanostructured device
design, which can be a more complex optimization problem compared to a binary nanostructured device design,
and can benefit from more sophisticated design algorithms.

2. Regression Model

Fig. 1: Nanophotonic power splitter. Fig. 2: DNNs for forward and inverse regression modeling [4]

.

The target device for our design/optimization is shown in Fig. 1, where 220nm-thick silicon-on-insulator (SOI)
is used as the waveguide, and 45 nm-radius holes with 130 nm spacing are arranged to split and guide the light.
Fig. 2 shows the concept of the regression model, where the network takes device topology design as input and
spectral response of the metadevice as label or vice versa. In the first example, we use a DNN in the forward design
model. Since the nanophotonic and photonic crystal design are analogous to image processing and recognition
problems, we use convolutional neural networks (CNN) to improve the forward prediction accuracy [10, 11].
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Fig. 3: Metric as a function of the number of
3D FDTD runs, for the conventional DBS and
the DNN-DBS methods. Three different ini-
tial conditions are used.

Fig. 3 shows a comparison of a standard direct binary search
(DBS) and DNN-assisted DBS. The latter compares 400 possi-
ble positions to flip using DNN before conducting each 3D finite-
difference time-domain (FDTD) simulation. Here, we plotted a
metric defined as

Metric= [|T1−T ?
1 |2 + |T2−T ?

2 |2 +α×R2], (1)

where T1 and T2 are the lowest transmitted power within the spec-
tral range of 1450 nm and 1650 nm. T ?

1 = 0.3 and T ?
2 = 0.7 are

used as an example target. We chose α = 10 as a weighting fac-
tor to suppress reflection. The training data do not include any
devices with the splitting ratio between 0.27 and 0.33, where the
splitting ratio is defined as T1/(T1 +T2). It can be seen that DNN-
assisted DBS optimizes the device structure much faster than the
conventional DBS, especially at the early part of the optimization.

Alternatively, a DNN can be used in the inverse design mode
as shown in the bottom of Fig. 2. Here, we train the DNN using
spectral responses as inputs, and device topology as outputs. In this case, we were able to design a device in a
single run with a splitting ratio not in the training data [4].

3. Generative Deep Learning Model

In order to generate a series of improved designs from existing sub-optimal designs, we constructed a new gen-
erative deep learning model based on a CVAE [6, 8] and an adversarial block [7, 9] as shown in Fig. 4 [12, 13].
The device structure is similar to the one described in Section 2, but with a footprint of 2.25× 2.25 µm2 with
111.8 nm spacing of etched holes with maximum raidius of 38.7 nm. We first use a variational autoencoder [14]
and convolutional layers [11] to encode the original 20×20 data (HV: hole vector) to 60 latent variables which are
the mean (µ) and co-variance (σ) of the normal distribution. Then we concatenate the transmission information to
the latent variables and pass into the decoder. The purpose of the adversarial block is to make the encoder only ex-
tract the pattern information rather than the performance information. The generated pattern gives the Bernoulli’s
distribution at each location point and different hole sizes are used to represent such probability of the appearance
of etched holes at certain locations.

To measure the performance of the generated devices, we use the following figure of merit (FOM):

FOM= 1−10×
[∫ b

a
|T1(λ )−T ?

1 (λ )|2dλ +
∫ b

a
|T2(λ )−T ?

2 (λ )|2dλ +
∫ b

a
α×R2(λ )dλ

]
, (2)

where T1(λ ), T2(λ ), R(λ ), and [·]? denote transmissions of output ports 1 and 2, reflection at input port at certain
wavelengths, and corresponding target values, respectively. Here, we used a wavelength range of a = 1250 nm
and b = 1800 nm. Figure 5 shows the FOM of the generated devices as a function of the splitting ratio. Each star
indicates generated data using the CVAE model, while open circles show data using the Adversarial-VAE model.
Each color represents different target splitting ratio. The results show that for each targeting splitting ratio, the
A-CVAE model generates improved FOM. The generated patterns, beam propagation, T1, T2, and T1 +T2 spectra
are shown in Fig. 6.
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