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Abstract: We present our recent effort on the integration of 1.5 µm III-V micro-cavity lasers on 

(001) Si wafers, and bufferless nano-lasers on (001) silicon-on-insulators (SOI) via direct hetero-

epitaxy by metal organic chemical vapor deposition.  
OCIS codes: (140.3410) Laser resonators; (140.3948) Microcavity devices; (230.5590) Quantum-well, -wire and -dot devices 

 

1. Introduction  

With recent demonstrations of competitive laser performances to their native III-V counterparts [1], III-V lasers 

directly grown on Si have reached the primary stage for a large-scale monolithic photonic integration platform from a 

techno-economic perspective. The capacity of scaling to 300 mm Si wafers in industry also warrants the feasibility of 

monolithic co-integration with micro-electronics. Following the “Moore’s law” in photonic integrated circuits (PICs), 

there is a craving in down-sizing the footprint of these monolithically grown III-V-on-Si lasers for energy efficiency, 

dense integration and chip complexity. In this paper, we briefly summarize our approaches in such miniaturization, 

including high-quality whispering-gallery-mode (WGM) micro-cavity lasers through blanket III-V hetero-epitaxy on 

Si, and nano-ridge lasers by selective epitaxy on SOI. Challenges and opportunities of each approach are discusses in 

the following sections. 

2. Micro-lasers grown on Si  

WGM micro-lasers with disk or ring resonator geometries are one of the most attractive on-chip light sources for PICs. 

Their inherent traveling wave operation nature requires no gratings or cleaved facets for optical feedback. Self-

assembled QDs, as emerging superior gain elements, offer unique characteristics of strong carrier localization in 

discrete three-dimensional nanostructures and less sensitivity to surface and interfacial defects. As a result, 

incorporating QDs promises a greater immunity to defects in III-V/Si hetero-epitaxy, and suppresses the severe 

spreading and surface recombination of non-equilibrium carriers in ultra-small lasers, leading to good device 

performance with low threshold and high temperature stability. 

 
Fig.1 (a) Growth of QD lasers on V-grooved Si. (b) L-L curve and linewidth evolution of one 1.5 μm-diameter disk pumped by a 

532 nm pulsed laser. (Insert: SEM image showing the device structure). (c) Lasing spectra, lasing mode identified to be TE1,6. (d) 

Threshold comparison with 1.5 µm-diameter micro-disk lasers simultaneously grown and fabricated on InP at 20 °C and 60 °C. 

Fig. 1 and Fig. 2 show the structures and some basic lasing characteristics of our optically pumped QD micro-disk 

lasers (MDL) and electrically-pumped micro-ring lasers on Si [2-4]. In these approaches, the laser cavities are formed 

through top-down fabrication steps using epitaxial blanket InP thin-film templates on patterned Si wafers, with the 

growth procedure schematically shown in Fig. 1(a). In the micro-disk laser structure (SEM in Fig. 1(b)), the 

fundamental WGM is tightly confined in both horizontal and vertical directions, enabling ultra-small device sizes in 

wavelength scales. We observed single-mode 1.55 µm lasing from disks 1.5-µm in diameter (Fig. 1(c)) and lasing at 

1.37 µm in 1.2-µm-diameter disks (Fig. 1(d)). And the lasing threshold is around two times of the same size micro-

disk lasers grown on InP native substrates. Such optically-injected ultra-small micro-disk lasers on Si can be integrated 

with other short-wavelength pumping sources to achieve multiple long-wavelength emissions in the telecom bands. 
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Making electrically-pumped MDL of similar size is difficult and superfluous since the current injection to the lasing 

mode would be extremely low, and the emission power would not reach a practical level. Instead, we made electrically-

driven micro-ring lasers on Si with larger outer radius of 25 µm (Fig. 2(a)). The epitaxial structure and the fabrication 

steps are more complex than the optically-pumped micro-disk lasers. Details can be found in [5]. Good electrical 

contacts formation is indicated by a typical V-I property for a P-I-N diode with a turn-on voltage of 0.7 V (Fig. 2(b)). 

and a series resistance of 10 Ω. And decent room-temperature laser performances can be achieved (Fig. 2(c , d)). 

 
Fig. 2 (a) Device structure and top-down SEM image of the micro-ring laser on Si. (b) IV curve (insert: cross-sectional mode 

profile). (c) Lasing spectra at different currents, overlapped with the spontaneous emission (Insert: 1×1 µm2 AFM image of the 

InAs/InAlGaAs QDs). (d) Temperature-dependent L-I curves under pulsed current injection. 

Nevertheless, there is still plenty of room for improvement both in device performances and exploring efficient means 

for active/passive integration. Increasing the output power from unidirectional emission needs to be further 

investigated. Besides, controllable single-mode operation is crucial for practical WDM applications, and we have 

demonstrated our approach on InP [5]. As the micro-cavity lasers were built on InP/Si templates with a fairly thick 

buffer (a few microns), it’s challenging to efficiently couple the above lasers with Si-based waveguides and other 

passive components.   

3. Nano-lasers grown on SOI 

In contrast to blanket epitaxial III-V thin films on Si with thick buffer layers and a dislocation density in the order of 

106 cm-2 for GaAs and 108 cm-2 for InP, selectively grown III-V alloys on Si feature a bufferless attribute and are 

generally dislocation-free due to the unique growth mechanisms and the defect necking effects [6]. The intimate 

positioning of the epitaxial III-V and the Si substrate also facilitates efficient light coupling from the III-V active 

devices into Si-based passive components.  

Our nano-lasers on bufferless InP/InGaAs nano-ridges were selectively grown on (001)-oriented SOI wafers. Epitaxy 

inside the V-grooved Si pockets with two {111} facets eliminates the formation of anti-phase boundaries [7]. Lattice 

mismatch between InP and Si is mainly accommodated by the formation of planar defects at the III-V/Si interface, 

while occasionally generated threading dislocations terminate at the oxide sidewalls (see Fig. 3(a)) [8-9]. Therefore, 

the upper epitaxial InP is essentially dislocation-free and is employed as the buffer layer for the growth of InGaAs/InP 

active regions. Fig. 3(b) presents a SEM image of the as-grown in-plane InP/InGaAs nano-ridges on SOI. Fig. 3(c) 

displays the cross-sectional TEM photo of one nano-ridge, manifesting the confinement of crystalline defects at the 

III-V/Si interface. The inserted InGaAs/InP ridge quantum wells feature an atomic sharp interface as shown in Fig. 

3(d) [10].     

 

Fig. 3. (a) Schematic showing the selective growth of bufferless III-V nano-ridges on SOI wafers. (b) SEM image of the as-

grown nano-ridges on SOI. (c) Cross-sectional TEM image of one nano-ridge, showing the formation of planar defects at the 

III-V/Si interface. (d) High-resolution TEM photo of one InP/InGaAs ridge quantum well with atomic sharp interfaces.   
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Simulated emission inside these nano-ridges demands a strong mode confinement within the epitaxial InP. Oxide 

spacers were thus removed, followed by undercutting Si into triangle-shaped pedestals and the definition of two end-

facets (Fig. 4(a)). The fabricated InP/InGaAs nano-laser array is imaged in Fig. 4(b). Under optical pumping, we 

observed room temperature stimulated emission from these nano-lasers [11-12]. Fig. 4(c) plots the emission spectra of 

one nano-laser with a 60 µm cavity length. Below threshold, abroad spontaneous spectra appear with evenly-spaced 

resonance modes, while above threshold, a sharp peak at 1509 nm protrudes from the clamped background emission. 

The evolution of the peak intensity and line-width with the excitation levels is plotted in Fig. 4(d). The inset shows the 

simulated profile of the lasing TE01 mode. The threshold of the probed nano-lasers are around 40 µJ/cm2.  

The challenge regarding the bufferless nano-lasers is how to transcend from optical pumping to electrical injection. 

Although doping the epitaxial III-V nano-ridges can be readily achieved, a special technique must be developed to 

pattern the metal pads in a way that provides an efficient carrier injection, and, at the same time, ensures a minimal 

optical loss. Novel growth schemes are also required to grow III-V alloys with a larger material volume for flexible 

laser designs. Another imminent issue to tackle concerns the design of efficient interfacing between the epitaxial III-

V light sources and the Si-based passive components.  

4. Conclusion  

In conclusion, we demonstrated 1.5 µm III-V micro-cavity lasers and nano-lasers directly grown on Si using two 

different approaches. The micro-ring/disk lasers built on blanket epitaxial InP thin films on Si, employs quantum dots 

as active gain medium to mitigate the influence of threading dislocations. The bufferless nano-lasers built on selectively 

epitaxial InP nano-ridges on SOI, adopt quantum wells as the active gain medium.  These epitaxial III-V lasers on Si 

could serve as compact light sources in future fully integrated Si-based PICs. 
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Fig. 4. (a) Schematic showing the fabrication process of nano-lasers on SOI. (b) Tilted-view SEM image of the fabricated 

nano-lasers on SOI. (c) Room temperature emission spectra of one nano-laser under optical pumping. (d) The evolution of the 

peak intensity and the line-width as the excitation level increases. Inset shows the modes profiles at 1500 nm.  
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