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Abstract: We propose a reinforcement learning based DU-CU placement scheme to accommodate 
diversified services in 5G/B5G networks. It outperforms ILP model and widely used heuristics in 
terms of the service-scale and resource-saving respectively. 
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1. Introduction

5G and beyond are expected to support service scenarios of versatile requirements, such as higher data rates (eMBB), 
ultra-low latency (URLLC), and massive connections (mMTC). These heterogeneous services will raise new 
challenges for radio access network (RAN) in terms of capacity, latency, and networking flexibility that accelerates 
its evolution towards next-generation RAN (NG-RAN). The baseband unit (BBU) has been re-defined as two new 
entities named distributed unit (DU) and central unit (CU) to make NG-RAN serve as a three-tier architecture, i.e., 
remote radio unit (RRU)-DU-CU. The large-bandwidth and latency-sensitive BBU functions below PDCP are located 
at DU, while functions above PDCP are provided in CU. Recently, the DU-CU placement pattern has attracted 
considerable attention from both academic and industry fields, which will become diversified depending on service 
requirements. Some telecom operators have submitted proposals on DU-CU placement in their white papers [1]. For 
eMBB, DUs are placed in processing pools (PPs) near users to alleviate bandwidth burden in fronthaul, while CUs 
are centralized in remote PPs for processing resource sharing. For URLLC, DUs and CUs are co-located in the 
proximity of users for latency satisfaction. However, this scheme is designed without a global view of the network 
state and overall service requests, which may result in resource over-consumption. For instance, if DUs are all 
distributed close to users, then more edge PPs are activated with extra cost and power consumption. If DU and CU 
are highly centralized, then more bandwidth and latency are introduced for long-reach and multi-hop transmission. 
Therefore, how to place DU-CU, both considering versatile service requirements and resource efficiency, becomes a 
crucial problem. 

Previous studies solved DU-CU or BBU placement mainly based on ILP models and heuristic algorithms. 
Essentially, ILP is a time-consuming solution and not suitable for large-scale service paradigm. The heuristics are 
extended from ILP and artificially designed for a specific scenario and optimization objective. Once the scenario has 
changed, heuristics cannot ensure a satisfactory strategy. Thus, we should introduce a more intelligent solution which 
not only adapts to various service paradigms but also achieves the self-optimization automatically. Reinforcement 
learning (RL), which handles complicated decision-making problems through efficient exploration, has been 
introduced to resource optimization in 5G networks [2, 3]. However, these works focused on general requests but 
ignore diversified services in 5G/B5G. Moreover, the service-oriented DU-CU placement based on RL method hasn’t 
yet been discussed. 

In this paper, we propose an RL-enabled DU-CU placement algorithm (RL-PS) adapting to three service scenarios 
to minimize the PP and bandwidth consumption. We also compare RL-PS with ILP, widely used greedy-based (GBA), 
and First-Fit algorithms under 3~30 service requests. Results show that RL-PS can generate a satisfactory solution for 
large-scale service paradigm while economizing the PP and bandwidth than GBA and First-Fit heuristics. 

2. Network Architecture and placement scheme

NG-RAN contains three x-haul segments, where fronthaul connects RRU and DU, midhaul connects DU and CU, and 
backhaul connects CU and metro data center (DC). Optical networks are attractive in providing cost-efficient x-haul 
solutions. In this paper, we consider an optical transport network (OTN) to interconnect RRUs, PPs, and metro DC in 
Fig. 1 (a), where fronthaul, midhaul, and backhaul share the common network infrastructures. For each link, several 
fibers are provided, and each of them consists of multiple wavelengths. For each node, an electronic switch (E-switch) 
and a reconfigurable add/drop multiplexer (ROADM) are equipped for switching on optical and electronic domains. 
PP is co-located with E-switch and ROADM, comprising several general-purpose processors (GPPs). DU-CU can be 
virtually implemented in virtual machines (VM) within GPPs to facilitate the efficient sharing of processing resources. 
All traffic flows are ultimately aggregated into DC for content processing. 
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During the placement, we should select a source RRU and one/two PP(s) to accommodate one service request. DU 
and CU should be placed once following the processing order, i.e., DU→CU. The DU-CU can be co-located like BBU 
or be separated into two PPs depending on the residual capacity of PPs. A lightpath should be established to connect 
selected RRU, selected PPs, and DC: a) we should route this service from selected RRU to DC passing through 
selected PP(s); b) we should guarantee that wavelength and bandwidth on links of this lightpath are sufficient to carry 
this service; c) we should guarantee that respective latency for front-/mid-/back-haul segments don’t exceed the 
limitations in Table 1. The latency consists of two parts: 1) transmission latency on fibers for 5μs/km, and 2) OEO 
conversion, electronic switching, and Fx/F1 interface encapsulation (OSE) for 20μs. The OSE latency is introduced 
for services when DU-CU processing or E-switching (e.g., grooming) is executed in PP node. We have proposed an 
ILP model considering the RRU and PP selection, routing, wavelength and bandwidth allocation, and latency control 
[4]. The detailed formulations and parameters for DU-CU processing and transmission are provided in Ref. [4]. We 
have also introduced two widely used heuristic algorithms for comparison, i.e., GBA and First-Fit. Both heuristics are 
based on the K-shortest paths strategy (KSP). First-Fit selects the first appropriate path to accommodate DU-CU. GBA 
tries to place DU-CU on all candidate paths, and then sort placement results in decreasing order of 𝑂 = 𝛼 ∙ 𝑉1 + 𝛽 ∙
𝑉2 (V1 and V2 denote the used PP amount and bandwidth). The path with minimal O is selected as the solution.  

3. RL-based algorithm 

RL algorithm is an episode by episode iterative learning procedure to search for the optimal action under a certain 
state [2]. As shown in Fig. 1 (b), we have designed an RL-based DU-CU placement algorithm, where the states, actions, 
and reward function are defined as follows. 1) State: The state st  is the combination of the service type (i.e., eMBB, 
URLLC, mMTC) and residual capacity of links and PPs at time-step t. 2) Action: The action at describes the location 
of DU-CU and the selected lightpath. For example, in action [2,3,1,2,3,4], first two numbers denote that DU and CU 
are respectively placed at PP 2 and PP 3, while latter four numbers represent its lightpath to pass through RRU 1, PP 
2,3, and DC 4. 3) Reward: The reward rt=-(α×P +β×B)/50+5 gives the evaluation on choosing action 𝑎௧  for state 𝑠௧ , 
where α and β are consistent with the weights in objective function of ILP. The variable P denotes the number of 
newly activated PPs for service sr, while B represents the bandwidth provision for sr. The reward function gives small-
integer feedback when action 𝑎௧ obeys the capacity (PP and link) and latency constraints. The deep neural network 
(DNN) is established to select the action at ∈ A (action space) adaptive to the current OTN resource state st, which 
comprises two convolutional neural networks with five 2×2 convolutional kernels, and two fully connected layers. 
There are 13 (RRU + PP node) × 13 × 5 (kernel) and 400 hidden neurons in two connected layers. The output of DNN 
is the estimated value of 198 actions. The execution steps of RL-PS are presented as follows. 

First, we should generate the training data for DNN through the interaction between actions and OTN. At time-
step t in one episode, DNN observes the network state together with the service request and then outputs the state-
action value 𝑄గ(𝑠௧, 𝑎௧) of all actions under the current strategy 𝜋௧ . We consider a ε-greedy policy as the action 
selection method. The 𝜀 (exploration rate, 0<ε<1) denotes the possibility of selecting the largest-Q-value action, while 
1-𝜀  represents the possibility for a random action. The 𝜀  increases with the learning procedure until reaching a 
maximum value 𝜀௫ . After executing the selected action, OTN then transits into a new state 𝑠௧ାଵ (with changed 
residual capacity for PPs and links) and generates a reward 𝑟௧. The data pair (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) is stored into the memory.  

Second, we should train DNN with the generated data so that selects the best placement action for service requests. 
The parameters of DNN are updated each 3000 time-steps with a random mini-batch of data chosen from the memory. 
The principle to train DNN is the Bellman equation of optimal Q-function as 𝑄గ(𝑠௧ , 𝑎௧) = 𝑟(𝑠௧, 𝑎௧) + 𝛾 ∙

 

Fig. 1. (a) Optical transport network interconnecting RRUs, PPs, and DC; (b) The structure of RL algorithm model 



𝑀𝑎𝑥𝑄గ(𝑠௧ାଵ, 𝑎௧ାଵ), where 𝛾 is a discount factor that reflects the significance of future rewards compared to the 
current rewards. The Q-function  𝑄గ(𝑠௧ , 𝑎௧ , 𝜃௧) with parameters 𝜃௧ is introduced to fit Q-value. The Bellman error is 
defined as ξ = 𝑄గ(𝑠௧ , 𝑎௧ , 𝜃௧ ) − 𝑟(𝑠௧ , 𝑎௧) − 𝛾 ∙ 𝑀𝑎𝑥𝑄గ(𝑠௧ାଵ, 𝑎௧ାଵ, 𝜃௧), which should be minimized to update DNN 
parameters through gradient descent method. DNN training continues until the Bellman error converges.   

4. Simulation Results and Analysis 

We consider a network topology of 8PPs (Node 1~8), 4 RRU nodes (Node 11~13, each node contains 7 RRUs), 1 DC, 
and 16 optical links in Fig. 3(a). The distance between RRU and its local PP ranges from 0 to 3km, while optical links 
range from 10 to 60km. The processing capacity of 6000 Giga operations per second (GOPS) is provided in each PP. 
Ten wavelengths (10 Gb/s per wavelength) are available on each link. Each RRU contains two antennas and a 100MHz 
spectrum with 16QAM for upstream. The required resource blocks (RB) and latency constraints for each x-haul 
segment are detailed in Table. 1. We have compared ILP, RL-PS, and two heuristics under 3 (3 categories ×1) ~30 (3 
categories ×10) service requests. Ten candidate paths are pre-calculated for RL-PS, GBA, and First-Fit strategies. 

The consumed bandwidth in four strategies is shown in Fig. 3(b), where ILP performs as the benchmark. The 
lightpath selection and DU location (because fronthaul dominates the bandwidth consumption) significantly influence 
the placement performance. RL-PS achieves a near-optimal solution followed by two heuristics because of its global 
optimization, which is benefited from the discount factor γ. GBA is a local-optimal strategy that can only achieve the 
optimal solution in the small-scale requests. First-Fit selects the first appropriate path and PPs to hold the service that 
may result in the long-reach and multi-hop fronthaul transmission. As shown in Fig. 3(c), the occupied wavelengths 
in each strategy are relevant to the bandwidth consumption that RL also performs better than two heuristics. As the 
service-scale grows, ILP solving becomes prohibitively time-consuming and fails to work at 27 and 30 simulation 
nodes. We also present the number of activated PPs in Fig. 3(d), where RL-PS achieves optimal performance as ILP, 
followed by GBA and First-Fit. Simulation results show that RL-PS is the potential to surpass traditional heuristics 
on resource-saving and ILP model on service-scale. 

5.  Conclusions 

We proposed an RL-PS algorithm for DU-CU placement in an optical transport network to achieve both advantages 
on large-scale service paradigm and resource optimization. Simulation results validated our inspiration that RL-PS 
accommodated more requests where ILP had collapsed while outperforming GBA and First-Fit heuristics in terms of 
PP, bandwidth, and wavelength economization. 
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Table 2. Simulation parameters for three defined services in upstream [5] 

Category  Wireless RBs Fronthaul Latency Mid+Backhual Latency 
eMBB 450 (~300Mbps) 100μs (20km) 1000μs  

URLLC 50 (~30Mbps) 250μs (50km) 1500μs  
mMTC 150 (~100Mbps) 50μs (10km) 450μs 

 

  
Fig. 3 (a) Simulation topology; (b) Bandwidth vs. (c) Wavelengths vs. (d) Number of activated PPs vs. # of requests 
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