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Abstract: We experimentally demonstrate a capacity-approaching transmission in 5G fronthaul 
utilizing PS-PAM8 and DNN. An 80-Gb/s over 20-km SSMF transmission performance is realized 
with a beyond 7.3-dB gross gain over uniform PAM modulations with linear post-equalization. 
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1. Introduction 
Stimulated by the exponential growth on the demand of data-thirsting services such as immersive virtual/augmented 
reality and super-resolution 4K/8K video, the bandwidth requirements in 5G radio access network have increased 
tremendously. 5G promises to provide capability to support such bandwidth-hungry applications by introducing new 
mm-wave frequencies. However, due to the short transmission range of mm-waves, new network paradigm has been 
recently adopted, wherein next generation mobile network (NGMN) is split into three major units: central unit (CU), 
distributed unit (DU) and remote radio unit (RRU), as illustrated in Fig. 1(a). The connection between CU and DU is 
typically referred to as the midhaul while the link between the DU and RU is known as the fronthaul [1-3]. Besides 
the architecture-wise innovation like flexible function-split based on different service types [4], the mobile fronthaul 
(MFH) also requires the deployment of high-capacity and lost-cost fiber based physical infrastructures. Among those 
systems, intensity modulation/direct detection (IMDD) is a preferred scheme due to its low power consumption, small 
footprint and low cost. On the other hand, those features of the IMDD scheme bring in some drawbacks as well, 
including limited transmitting power and small channel bandwidth. PAM modulations like OOK and PAM4 are widely 
used in IMDD since they are simple and robust. However, the PAM modulation lacks sufficient flexibility in adjusting 
spectral efficiency, which makes it incapable to fully utilize the channel resources (i.e., bandwidth and SNR). 
Originated from coherent optical communications, probabilistic shaping (PS) has become a popular approach to 
reduce the gap in SNR between the capacity of the optical communication system and the Shannon limit [5]. Through 
shaping the occurrence probability of the constellation points in a modulation scheme, or in other words, increasing 
the possibility to transmit lower amplitude symbols, we can increase the minimum Euclidean distance among all the 
constellation points at a given average signal power as illustrated in Fig.2(b). Besides, the spectral efficiency of PS 
modulation can be continuously adjusted by varying the constellation probabilistic distribution. Nevertheless, the PS 
shaped signal is associated with a higher PAPR, which can easily exceed the small dynamic range of the low-cost 
IMDD based MFH link, resulting in severe nonlinear impairments. Inspired by the booming progress in artificial 
intelligence, neural network based nonlinear equalizer has found its applications in optical communication recently 
[6]. Moreover, neural networks with multiple hidden layers, i.e., deep neural network (DNN), demonstrate even better 
performance.  In our previous work, we demonstrated a DNN decoder for enhanced multi-level signal recovery in 
MFH which outperformed the conventional Volterra nonlinear equalizer (VNLE) [7]. Although there are some 
concerns about the DNN complexity, the training time of the DNN to adapt dynamic channel environment can be 
significantly reduced through transfer learning once the initial training is complete. Moreover, the online querying of 
the trained DNN, i.e., nonlinear equalization and signal decoding, just involves multiple matrix multiplications with 
a low time complexity [8].  
 In this paper, for the first time, we efficiently take advantage of both PS to utilize the channel resources and DNN 
on nonlinear signal equalization/decoding, and experimentally demonstrate a capacity-approaching transmission in 
the 5G MFH. A proof-of-concept experiment is conducted to verify the efficacy of the proposed scheme with an 80-
Gbps PS-PAM8 signal over 20-km standard single mode fiber (SSMF) transmission based on SD-FEC. 

2.  Operation principles and experimental setup 
Fig.1(c) shows the experimental setup of the proposed scheme for NGMN. Firstly, a uniformly distributed binary bit 
sequence is randomly generated and input to a distribution matcher (DM) for PS. Here, the implemented DM is based 
on the constant composition distribution matcher (CCDM) [9]. The PS symbols output by the CCDM follow the 
Maxwell-Boltzmann distribution with flexible entropy through adjusting the constellation point occurrence probability 
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as given by: 𝑃(𝑎$) = exp(−𝜆𝑎$,) ∑ (−𝜆𝑎$,)$⁄ , where ai is the amplitude of a constellation point, and λ is a fitting 
parameter. The shaped symbols are then PAM mapped and converted to an analog signal as shown by inset (i) through 
a 64-GSa/s arbitrary waveform generator (AWG, M8195A). The modulator driver is used to provide sufficient signal 
voltage swing to drive the DML (SCMT-100M11G), while the DML is used as the transmitter in the CU to convert 
the driving signal into the optical domain with a center wavelength at 1548.3 nm as illustrated in inset (ii). The optical 
signal propagates through a 20-km SSMF and detected by a PIN receiver (SCMR-100M11G) in the DU. The detected 
signal is digitized using an oscilloscope with 80-GSa/s sampling rate (DSOZ254A) for the following digital signal 
processing. As shown in Fig.1(b), though the PS-PAM8 signal with an information rate of 2.5 bits/symbol has a larger 
minimum Euclidean distance than the uniform PAM8 modulation at a certain average signal power, it also introduces 
a higher PAPR. The peak of the signal can easily exceed the small dynamic range of the low-cost electrical and optical 
components in the MFH and make it vulnerable to nonlinear impairments. In this case, commonly used linear 
equalization schemes (i.e., least mean square algorithm (LMS)) will not suffice. Nevertheless, DNN is proven to be 
able to eliminate the nonlinear impairments efficiently because of its superior modeling capability owing to the multi-
layer architecture and nonlinear activation function. Moreover, implementing the DNN into the MFH is more practical 
now because of the explosive improvements in efficient nonlinear multi-variable optimization algorithms and the low-
cost parallel computing hardwares (i.e., graphic processing unit (GPU) and tensor processing unit (TPU)). Fig.1(d) 
shows the structure of the implemented DNN decoder. We take the input symbol with its 80 previous and 80 
subsequent symbols as the input layer. The DNN consists of 2 hidden layers with 1024 neurons at each layer. There 
are 8 neurons at the output layer, each one corresponds to a constellation point of the PAM8 modulation. We use the 
Selu function as the activation function at the hidden layers which can effectively eliminate the gradient vanishing 
and gradient exploding problems that commonly result in DNN’s incapable of convergence. The activation function 
at the output layer is Softmax given by: 𝜎(𝑧)1 = 𝑒34 ∑ 𝑒356

789⁄ . The Softmax function is employed to calculate the 
probability of each DNN output values, while categorical cross-entropy defined as: 𝐽(𝑤) = −1 𝑁⁄ ∑ [𝑦@𝑙𝑜𝑔𝑦D@ +F

@89
(1 − 𝑦@)log	(1 − 𝑦D@)], is implemented for loss calculation. In the combination of the Softmax function and the 
categorical cross-entropy, the calculation of the partial derivative for back-propagation is more concise. Besides, we 
utilize the Adamax algorithm to train the DNN, which can efficiently avoid the local optima. Another severe problem 
associated with DNN is overfitting. We alleviate it through integrating dropout layers in the DNN as shown by the 
dashed blue arrows in Fig.1(d), which deactivates 20% of neurons during each training epoch. We also divide the 
received symbols into 3 sets, namely, training set, validation set, and testing set with a ratio of 0.6, 0.1, and 0.3, 
respectively. The validation set is used to measure the validation accuracy over the whole training process. When the 
validation set accuracy is not improving over 100 epochs, we will stop the training to avoid severe overfitting. 

3.  Experimental results 
To verify the feasibility of the proposed scheme, we conduct a proof-of-concept experiment. The frequency response 
of the end-to-end system configured as Fig.1(c) is measured by a 20-GHz vector network analyzer as shown by the 
red curve of Fig.2(a). The measured S21 response is in between the input to the modulator driver and the PIN receiver 
output. As observed, the S21 response is relatively flat below 16 GHz, while it degrades dramatically beyond that 
frequency. For comparison, we also plot the spectra of PS-PAM8, PAM8 and PAM4 with a bit rate of 80 Gb/s in 
Fig.2(a) as indicated by blue, purple, and green curve, respectively. Due to the low spectral efficiency of PAM4 
modulation, the spectrum of PAM4 signal is far beyond the bandwidth of the system. However, since we can flexibly 
set the entropy of PS-PAM8 signal, the PS-PAM spectrum closely matches the system frequency response, which 
maximizes the bandwidth utilization. As for the PAM8 signal, though it’s within the bandwidth limit of the system, 

  
Fig. 1 (a) Illustration of NGMN architecture. (b) Illustration of PS-2.5 PAM8 with high PAPR; d1, d2, d3 are minimum Euclidean distance for 
PAM4, PAM8, and PS-2.5 PAM8, respectively. (c) Experimental setup of the proposed transmission scheme, CU-DU-RRU; including inset (i) 
Histogram of the generated PS-2.5 PAM8 signal and (ii) Optical spectrum of the DML output. (d) Structure of the DNN decoder. 
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the Euclidean distance between adjacent constellations is too small to reach acceptable BER performance because of 
the limited SNR in the low-cost IMDD system. To set up a baseline in reference to the discussed modulation schemes, 
we firstly measure the optical back-to-back (BtB) transmission performance of 80-Gb/s signals based on IMDD with 
an optimized LMS post-equalization. During the measurement, the received optical power (RoP) is scanned from -4.5 
dBm to 4.5 dBm with 1-dB increment. The measured BER curves for PS-PAM8, PAM8 and PAM4 are shown in 
Fig.2(b) as blue, red, and yellow solid curves, respectively. The SD-FEC and HD-FEC thresholds are also plotted as 
reference lines. For the PAM4 modulation, the BER cannot go below either of the thresholds for all the measured RoP 
values due to the insufficient system bandwidth. In the PAM8 modulation case, the BER becomes lower as the RoP 
increases and passes the HD-FEC threshold at -0.6-dBm RoP. However, the PS-PAM8 achieves a -3.4-dBm receiver 
sensitivity and demonstrates a prominent 2.8-dB gain over PAM8 modulation at the HD-FEC threshold. In addition, 
the BER curves after 20-km SSMF transmission are also measured as shown in Fig.2(c). The PS-PAM8 demonstrates 
a remarkable 4.1-dB gain compared with PAM8 at SD-FEC threshold. As discussed in the former section, the higher 
power efficiency of the PS signal is at the cost of increasing the PAPR. In the low-cost MFH system, the high PAPR 
can easily exceed the limited dynamic range of the transmission link and resulting strong nonlinearity. The DNN 
decoder is an efficient method for mitigating nonlinear impairments. To verify the performance, we randomly generate 
a 100k symbol length PS-PAM8 signal in the CU. At the DU, after resampling and resynchronization, we take the 
first 60% of the received symbols as training set, the following 10% as validation set, and the remaining 30% is test 
set for the DNN. We monitor the validation-set accuracy while training the DNN, once validation-set accuracy stops 
improving over 100 epochs, the algorithm will stop the training automatically and save the most current DNN model 
parameters. The trained DNN decoder will then decode the test-set data. Fig.2(d) demonstrates an experimental 
verification on the DNN’s performance. The blue curve is the baseline BER performance over RoP with the LMS 
post-equalization, while the red curve indicates the performance of the DNN decoder. At the SD-FEC threshold, the 
DNN decoder demonstrates a noteworthy extra 3.2-dB gain over the baseline, which proves the DNN’s efficacy on 
eliminating the probabilistic shaping’s drawback of nonlinear impairment, and on significantly improving the overall 
transmission performance from the CU to DU. 

4.  Conclusions 
We propose and experimentally demonstrate a capacity-approaching transmission in 5G MFH based on PS-PAM8 
modulation and DNN decoder. The PS-PAM8 signal is power efficient and is flexible in information rate to adapt the 
channel conditions. However, probabilistic shaping introduces a higher PAPR and make the PS signal vulnerable to 
the limited dynamic range of the hardware components in 5G MFH resulting in severe nonlinear impairments. We 
subsequently implement a DNN decoder for nonlinear compensation to significantly improve the overall transmission 
performance from the CU to DU with a 3.2-dB extra gain at SD-FEC threshold. Adding up the 4.1-dB gain from PS-
PAM8, a 7.3-dB gross gain is realized comparing with conventional uniform PAM modulations with linear post-
equalization. Our scheme offers a promising solution to mitigate capacity crunch in 5G MFH. 
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Fig. 2 (a) Measured system S21 response and signals spectra. BER over received optical power (RoP), (b) at B2B case, (c) over 20-km SSMF, (d) 
with and without DNN decoder. 


