
T3J.4.pdf OFC 2020 © OSA 2020

uABNO: A Cloud-Native Architecture for
Optical SDN Controllers

Ricard Vilalta1, Juan Luis de la Cruz1, Arturo Mayoral López-de-Lerma2, Victor López2,
Ricardo Martínez1, Ramon Casellas1, Raul Muñoz1

1Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Spain.
2Telefónica gCTIO/I+D, Spain

Abstract: We present a cloud-native architecture for Optical SDN Controllers based on ABNO
architecture and gRPC interfaces, which is demonstrated and evaluated. Autoscaling mechanisms
for high request loads and auto-healing support are evaluated. © 2020 The Author(s)

1. Introduction
Software Defined Networking (SDN) is a consolidated network architecture paradigm that provides network
programmability by separating the control plane logic from the data plane forwarding infrastructure. This decoupling,
provides novel benefits to network operators, such as CAPEX savings by replacing dedicated hardware network
equipment by software-driven network elements and OPEX thanks to faster new service introduction. SDN has been
accompanied with new open standard interfaces, such as NETCONF, gRPC, OpenFlow or P4, which allow to interact
with the network elements from centralized entities generally defined as SDN controllers [1].

SDN controllers currently are developed as single monolithic and resource-hungry applications, which might be
replicated in case of need for resiliency or extra resources. This leads to non-efficient use of the resources, does not
provide scaling mechanisms for high loads of connectivity service requests, and incur on extra delays in each request,
not allowing a cloud-scale number of requests. Some network vendors are experimenting with solutions that export
the complexity towards applications, but are not dealing with the need to break the monolithic SDN controllers [2].
The Applications-Based Network Operations (ABNO) framework [3] has been standardized by the IETF and it is
based on standard protocols and components to efficiently provide a solution to the transport network orchestration.

Microservices are a software development technique that structures an application as a collection of interconnected
and related services. In a microservices architecture, services are simple and detailed and the protocols are lightweight.
For example, gRPC Remote Procedure Calls (RPC) [4] is a protocol designed for cloud native high-performance RPC.
It uses HTTP/2 as a transport protocol and uses protocol buffers encodings for transported messages. gRPC has been
proven as useful in telemetry, due to its low latency and small byte overhead.

In this paper, we propose the application of microservices architecture to the development of an SDN controller.
The internal architecture of SDN controller makes it clearly a good candidate for splitting it into microservices, which
provide resiliency and scalability features per design. Using ABNO components, several microservices will be
defined, including path computation service, NBI service, connectivity service, connection service, topology service,
context service, VNTM service, transceiver service, monitoring service, and plugin services. Each microservice will
interact with each other using protocol buffers and gRPC interfaces. A common gRPC interface will be provided for
health check of the microservices.

This novel cloud-native architecture named uABNO (Fig. 1, left) provides multiple technological benefits, which
have been clearly demonstrated in other cloud computing applications. The most significant is application resiliency,
where microservices are monitored and restarted in case of misbehavior. Another benefit is application scalability,
which tackles request load increase, with deployment of new instances of necessary microservices. Finally, our
proposal also provides ease of integration in a cloud-native solution, considering that most upcoming network software
solutions will be cloud-native. This paper demonstrates the feasibility and advantages of the proposed uABNO
architecture for optical SDN networks and provides interesting results on connectivity provisioning delay, as well as
it validates auto-scaling and self-healing mechanisms.
2. uABNO architecture
The proposed architecture consists on reformulating the concept of SDN controller, which is responsible for network
control and management. SDN controller receives network intents from the network operator, describing how network
should behave and which connectivity requests need to be addressed while properly configuring the underlying
network elements. The operator’s Operation Support Services and Business Support Services (OSS/BSS) are able to
interact with the proposed cloud-native SDN controller, through Standard interfaces, such as ONF Transport API.
Then, the SDN controller is responsible for network control and management, thus providing the necessary network
dynamicity, through interaction with underlying network elements.

T3J.4.pdf OFC 2020 © OSA 2020

The proposed uABNO internal architecture consist on microservices that interact using gRPC protocol buffers
based on ONF Transport API. This conversion considers [5]. Moreover, a Cloud Orchestrator (such as Kubernetes) is
responsible for lifecycle management of the microservices (including health checks and resource allocation). The
uABNO microservices can be classified within three types: a) Database microservice, which provides a scalable cloud
native database (such as MongoDb) for storing network element topology, status and configuration, as well as
connectivity services requested and connections; b) HTTP microservice, which exposes uABNO NorthBound
Interface (NBI) (e.g., ONF Transport API) as a RESTconf API and translates the request to internal protocol buffers;
and c) gRPC microservices, which use gRPC protocol and protocol buffers as basis for intercommunication.

Fig. 1 (left) shows proposed uABNO architecture. NBI microservice is responsible to interact with network
operator’s OSS/BSS and translate the connectivity requests into internal protocol buffers. The cloud-native database
(Context implemented in MongoDb) is responsible for storing the context that includes controlled and managed
connectivity services, connections and topologies. It interacts with their respective components in order to create, read,
update and delete (CRUD) the records.

The internal architecture workflows are depicted in Fig. 1 (right). Once a connectivity service request is received,
the NBI translates this request into the proper protocol buffer and sends the request to connectivity microservice. The
connectivity microservice first requests a path computation to path computation microservice that requires a topology
retrieval. Once a feasible path is computed, virtual network topology manager (VNTM) microservice is responsible
for analyzing the need for multi-layer/multi-domain connections and generates the necessary connection requests
towards the connection microservice. The connection microservice is responsible for requesting the necessary network
element configuration (e.g., NETCONF, OpenFlow), or interacting with underlying SDN controllers.

The workflow for removing a connectivity service is also detailed in Fig. 1 (right). The NBI receives a connectivity
service delete request, which is forwarded to connectivity microservice. Connectivity microservice requests to
connection microservice the deletion of the related connections.

This proposed cloud-native architecture has several key benefits that introduce network automation: a) self-healing
properties, due to the constant monitoring of microservices and restart of them in case of failure; b) auto-scaling,
which allows to monitor microservice resource consumption and scale the microservice horizontally in case of
overload (path computation is a resource consuming process which easily scales horizontally); c) load balancing,
related to auto-scaling, in the sense that it allows to balance the load between replicated microservices; and d)
automated roll-backs, which allow the declarative network status description, benefiting network operators with
network programmability.
3. Autoscaling and self-healing microservices
The inherent features from a Cloud Orchestrator such as Kubernetes provide the necessary support for two key features
that are required for a modern Optical SDN controller: autoscaling and self-healing. uABNO microservices might
benefit from Horizontal Pod Autoscaler (HPA) component of Cloud Orchestrator. A certain amount of CPU and
memory resources are requested per microservice. HPA monitors the microservice behavior and notices if resource
limit is reached. Then, a new replica is generated and load between replicas is balanced in order to reduce resource
utilization. This feature is useful for resource consuming microservices such as path computation.

Another significant benefit from cloud-native orchestration is the introduction of monitoring the status of the
microservices, using a health check regularly (if the service is serving request or not serving). In case of service bad
health (which might be caused by some blocking external component or an unexpected microservice behavior), Cloud
Orchestrator removes the current deployment of the microservice and a new replica is deployed. This is known as a
self-healing mechanism.

Fig. 1 (left) uABNO cloud-native architecture, (right) uABNO connectivity service create/delete workflow

T3J.4.pdf OFC 2020 © OSA 2020

4. Experimental results
The proposed uABNO architecture has been developed based on python container-based microservices, which use
gRPC and protocol buffers interfaces to communicate between them. MongoDB has been deployed for context
storage, including connectivity, connection and topology information. The connection component has several plugins
in order to directly control NETCONF-based network elements or interact with REST-based optical SDN controllers.
In our current setup, we have simulated a 14 node NSF network, where each node is managed by a NETCONF agent.
A Kubernetes 1.15 cluster of two nodes using Intel NUC with i7, 32Gb RAM, 1Tb SSD has been deployed on top of
ADRENALINE Testbed Cloud Platform. Istio and Kiali have been installed in order to monitor the microservices
running on the cluster. A loadgenerator microservice has also been developed in order to stress the proposed
architecture and obtain significant results of optical cloud-native SDN controller.

Fig. 2.a shows the relationship between the deployed microservices. It can be observed that three types of protocol
are introduced (HTTP orange/gRPC green/TCP blue). It also shows the aggregated latency (in average) between
components. For example, a connectivity-service creation request might take 172ms, from these 94ms correspond to
path computation, 60ms to VNTM, or 5ms to connection. Fig. 2.b shows the request duration from the NBI
perspective. It can be observed that request duration varies depending if it is a connectivity service create request or a
connectivity service delete request. Create requests average 150ms, while deletion requests average 30ms.

Fig. 2.c provides an example of horizontal scaling behavior, after increasing path computation complexity in order
to demonstrate auto-scaling properties. Once path computation delay reaches a certain threshold (meaning that more
CPU resources are needed), a new replica of path computation microservices is deployed, thus leading to a reduction
on path computation delay. Fig. 2.d shows the self-healing property, after emulating an error in connectivity
microservice. The orchestrator automatically restarts the microservice within the configured timeout (150s).
5. Conclusions
We have successfully validated and demonstrated a novel cloud-native architecture for Optical SDN controllers. The
proposed uABNO provides a higher degree of flexibility, stability and scalability than current monolithic SDN
controllers. The application of cloud-native network control and management will provide network operators with a
higher degree of network automation.
Acknowledgment
The research partially funded from EC METRO-HAUL (761727) and Spanish AURORAS (RTI2018-099178-B-I00).
References
[1] L.M. Contreras, et al., “iFUSION: Standards-based SDN Architecture for Carrier Transport Network”, in IEEE CSCN, October 2019.
[2] Van, Quan Pham, et al. "Demonstration of Container-based Microservices SDN Control platform for Open Optical Networks." OFC, March
2019.
[3] A. Aguado, et al. "ABNO: A feasible SDN approach for multivendor IP and optical networks." JOCN 7.2 (2015): A356-A362.
[4] R. Vilalta et al, “Grpc-Based SDN Control And Telemetry For Soft-Failure Detection Of Spectral/Spacial Superchannels”, ECOC 2019.
[5] UML to ProtoBuf Mapping Guidelines, TR-544 v1.0-info, February 22, 2018.

Fig. 2 a) Connectivity Service aggregated latency per component, b) CDF for connectivity service duration, c) Path Computation delay after

Horizontal scaling, d) Connectivity Service self-healing mechanism

