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1. Introduction

The combination of vast amounts of available data and processing power of today’s computing systems has enabled
Machine Learning (ML) techniques to surpass human capabilities in a wide range of tasks, including image and
speech recognition [1, 2]. Consequently, ML is transforming almost every industry and has become the focus of
all major internet companies, such as Google, Microsoft, or Amazon.

In particular, deep learning (DL) has been shown to be able to excel at various tasks, including computer
vision, speech recognition, and natural language processing (NLP). DL implements deep networks of neurons that
can learn higher order functions and representations. There are two basic operations: training and inference. In
supervised learning, the training process presents labeled data to the neural network, which makes a prediction
that is compared with the label. The error of the prediction is backpropagated to update the neural network’s
parameters. This process is repeated numerous times until the error becomes minimal. After training, the network
is deployed and fed with unlabeled data, on which predictions are made. This process is known as inference.

The training of deep neural networks (DNNs) is compute intensive and requires many iterations over vast
amounts of data. Without parallel computing and accelerators like GPUs or Google’s specialized TPU [3], the
training of such DNNs would not be practical. In fact, today’s training systems comprise hundreds if not thou-
sands of accelerators [4]. As accelerator performance improves and systems scale out to such large numbers of
accelerators, the interconnection network becomes critical. The remainder of this work discusses the role of the
network and why we will see an increased demand for bandwidth. This demand cannot be fulfilled by existing
electrical or optical solutions and requires us to move towards silicon photonics.

2. Parallel Training Algorithms

The following describes how DNNs are trained on parallel and distributed systems.

2.1. Data Parallelism

The algorithm used to train DNNs is stochastic gradient descent (SGD). Instead of calculating and backpropagat-
ing the error for every sample in the training set, multiple samples are drawn stochastically to form a mini-batch.
Parameters of the DNN are updated once per mini-batch. One pass through all mini-batches of the training set is
called an epoch.

The most common and scalable way to parallelize the training is to split the mini-batch into p sub-batches, in
which p is the number of parallel workers. Each worker calculates the weight gradients, which indicate how the
parameters need to change, and then exchanges the gradients with all other workers, commonly implemented with
an All-Reduce.

The maximum size of the mini-batch is the size of the training set. However, if parameters are only updated once
per epoch, many epochs may be required until the error of the DNN converges to a minimum. Conversely, using
small mini-batches will result in more frequent parameter updates, but can lead to a poor quality of result. As a
consequence, there is an optimal mini-batch size for a network to converge using the least amount of computation
[5]. As we scale out horizontally to large numbers of workers under a given maximal mini-batch, the sub-batch
per worker becomes smaller and smaller. In practice the sub-batch often needs to be larger than one sample to
allow for efficient computations.
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Fig. 1. Required bandwidth to perfectly overlap the weight gradient reduction with the backward
pass as GPUs become faster and systems larger. The data assumes software All-Reduce algorithms,
which achieve half of the available raw bandwidth (shown in the graphs).

While some networks like ResNet for computer vision tasks allow for large mini-batches [6] and therefore good
scale-out, others like Transformer networks [7] for NLP are more restricted. In order to accelerate training beyond
the limit of data parallelism, model parallelism needs to be applied.

2.2. Model Parallelism

While data parallelism splits the input and trains replicas of the model on sub-batches, model parallelism dis-
tributes the model and its parameters across a number of workers. This becomes necessary when we reach the
limits of data parallelism, but also when models are simply too large to fit into a worker’s memory. In general,
we observe that larger models tend to perform better at their tasks and achieve higher accuracy, both in computer
vision [8] and NLP [9]. We can therefore assume that models will continue to grow and require a plurality of
workers, rendering communication between them even more important.

3. Bandwidth Requirements in Machine Learning

In this section, the bandwidth requirements of the training of DNNs are discussed in more detail.

3.1. Deep Learning Training

In data parallelism the weight gradient reductions can be overlapped with the backpropagation of the error, for
example by reducing gradients of layer i while we calculate gradients for layer i−1 (note that we go backwards
through the DNN). Therefore, the bandwidth of the network needs to be sufficiently high to hide communication
behind the backward pass. The required bandwidth Breq in data parallelism therefore depends on the model size M
and floating point operations (FLOPs) F , the number of workers p, the performance of a worker P and efficiency
α , as well as the mini-batch size bm. Note that the efficiency and FLOPs are non-linear functions of the sub-batch
bm
p and model size M and increase as either gets larger.

Breq ∝
pM ·Pα( bm

p ,M)

F(bm,M)

M=const−−−−−→
pPα( bm

p )

F(bm)

← increases as we improve the GPU performance
← decreases as we increase the scale

(1)

Equation (1) shows that the bandwidth increases as the number of workers and the performance of a worker
increase and we observe that both of these factors grow rapidly. Although Moore’s Law in terms of single processor
performance has slowed down if not ended, parallel processing and specialization keep on increasing compute
performance at exponential rates. Furthermore, we already deploy hundreds to thousands of accelerators to train
large models and as models become larger and tasks more complex, even larger systems are required to keep
training duration reasonable. As a result, the bandwidth requirements between accelerators keep on growing to the
point in which electrical and non-integrated optical signaling become impractical. Figure 1 shows the calculated
required bandwidth based on a network’s size and the time spent in the backward pass. As we increase the scale
(x-axis) or the performance of the GPU (y-axis) the backward pass time decreases while the size of the weight
gradients stay constant. The graphs assume a linear decrease in compute time as we increase scale or performance.
As a result, the required bandwidth increases dramatically as GPUs get faster and systems larger.

As aforementioned, model parallelism will become inevitable to overcome limits of data parallelism, but also
memory capacity constraints of processors. Unlike data parallelism, it is difficult to hide communication. One
attempt is to map layers of the DNN onto different processors and operate the chain of workers in a pipeline
fashion. However, this requires to find a careful partitioning in which each worker has about the same amount of
work to avoid ’pipeline bubbles’. A more promising albeit non-overlapping case is to process individual layers
collaboratively on multiple workers. This requires synchronization and collective data exchanges for every split
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layer in the forward and backward pass. Again, this too requires careful partitioning and effort to optimize data
placement for locality.

Each layer’s time is a linear combination of time spent on computation and communication. Consequently,
with compute improving at exponential rates the bandwidth needs to keep up to avoid the network to become the
bottleneck. For example, NVIDIA’s Pascal architecture achieved 20 TFLOP/s at 150 GB/s NVLink bandwidth,
while the current Votla architecture achieves 120 TFLOP/s at 300 GB/s NVLink bandwidth. That is a 3x increase
in the ratio of compute performance to I/O bandwidth.

The reason why model parallelism is complex and hard to implement is the effort involved in optimizing for
locality to minimize the overhead of communication. This is caused by the much lower I/O bandwidth compared to
the local memory bandwidth. For example, NVIDIA’s Volta architecture [10] provides 900GB/s to local HBM (and
much higher bandwidth to the L2 cache), but only 300GB/s to NVLink-connected peers. However, the NVLink
domain is limited to 16 GPUs today as it requires an indirect network with full-bisection bandwidth. Scaling model
parallelism further requires not only higher bandwidth but also larger domains (e.g. rack scale). Co-packaged
silicon photonics can address the predicted bandwidth density, power and reach requirements.

4. Conclusion

Machine Learning is becoming the dominant workload in data centers and accuracy of models improve rapidly. As
models keep increasing in size, training them becomes challenging and requires tremendous amount of compute
resources. While processor performance improves at exponential rate and we continue to increase our systems,
the interconnection network’s bandwidth needs to keep up. For example, the training of a Transformer model on
a 2x larger systems with 5x faster GPUs than today already requires almost 3 Tbps bandwidth per GPU (i.e. 8x
400GigE), pushing the limits of electrical and traditional optical signaling. Practical model parallelism demands
network bandwidths close to the accelerator-attached memory bandwidth, further arguing for in-package silicon
photonics.
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