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1. Introduction

Coherent detection is continuously gaining ground in shorter-range optical communications, while the research com-
munity tries to innovate with cost-sensitive solutions to keep up with the market demands, which become tighter as
the range of application approaches the user end. In this context, an emerging trend is the combination of directly
modulated lasers (DML) and coherent receivers. In [1] it was shown that the frequency chirp of the DML, historically
considered an impairment, can be beneficial if the signal is coherently detected at the receiver, since both the observed
amplitude and phase convey useful information. Later, in [2], the authors reported, by means of simulation and exper-
imental verification, that using the Viterbi algorithm for sequence decoding results in a significant gain in SNR (up
to 10 dB) with respect to the conventional IMDD approach, where a simple PAM4 signal had been used to directly
modulate a DFB laser. This technique is conventionally referred to as complex modulation of DML, or CM-DML.

2. Background

2.1. DML-induced chirp model review

The frequency chirp of a laser is the change on its optical frequency induced by a change on its driving current. In a
complex-baseband representation, where the optical angular centre frequency ωc is zero and T is the symbol period,
the phase jump measured between two consecutive samples, at times t−T and t, is the combination of three terms, as

∆ϕ (t) =
α

2

(
log

P(t)
P(t−T )

+
∫ t

t−T
κP(t)dt

)
+ϕpn (t) , (1)

where the two terms in brackets are the transient and adiabatic chirp, being κ the coefficient of the latter, α is the
linewidth enhancement factor, and ϕpn (t) is Gaussian phase noise with zero mean and variance

σ
2
p = 2π∆νT, (2)

where ∆ν is the combined linewidth of the transmitter and local oscillator (LO) lasers in Hz. Both the adiabatic
chirp and the phase noise are mechanisms that introduce memory in the channel, posing a complexity problem for
maximum-likelihood sequence estimation (MLSE) algorithms.

2.2. The previously proposed algorithm

In [2] the authors used a differential approach on the received signal in order to suppress the phase noise-induced
channel memory, enabling the execution of a reduced-complexity version of the MLSE-Viterbi algorithm, having a
sequence length of 2 symbols only. The detailed description of its implementation is given in Table 1 in [2]. The
transition distance, λ (χt), (Eq. (5) in [2]) is given by

λ (χt) = |P(t−T )− x(t−T )|+
∣∣∣√P(t) · exp( j∆ϕ (t))−

√
x(t) · exp( j∆ϕE (t))

∣∣∣ (3)
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Fig. 1. Density map of differentially detected PAM4 signals using a DML (α = 4, SNR = 15 dB).
On top of it, the equidistant curves computed with the Original (a) and Proposed (b) metrics.

where ∆ϕE (t) is the predefined transition phase jump obtained with a simplified version of Eq. (1) given by

∆ϕE (t) = c1 log
x(t)

x(t−T )
+ c2 (x(t−T )+ x(t)) , (4)

where x(t) is the power of the transmitted symbol at time t, and the coefficients c1 = α/2 and c2 = καT/4.
To see how the metric in Eq. (3) —hereinafter referred to as the Original— approximates the probability density of

observed transitions, Fig. 1 (a) shows its generated contour of equidistant curves plotted over the probability density
map of a differentially detected DML-PAM4 signal with α = 4 and SNR arbitrarily set to 15 dB (κ and ∆ν are
neglected, the y-axis conveniently inverted).

3. The proposed transition distance in polar coordinates

Inspired by a recent publication [3], where the partially coherent AWGN channel is approximated in polar coordinates,
herein we propose an alternative version that considers the differential phase error as the contribution of three zero-
mean, normally-distributed terms: the phase noise with variance σ2

p , and the AWGN-induced angular deviation of
each of the two symbols involved in the transition, which, in an a posteriori manner, depends on the transmitted and
observed intensities as follows [4]

σ
2
n (t)≈

N0

2
√

P(t)x(t)
(5)

where the AWGN power N0 is computed from the SNR in dB as 10log10 (Psig/N0), with Psig as the average transmitted
power, and the differential phase noise variance is obtained as in Eq. (2).

Therefore, the Proposed —as it will be referred to— transition distance λP (χt) can be obtained in polar co-ordinates
as the sum of both modulus and (differential) angular squared distances, that is

λP (χt) =
∣∣∣√P(t)−

√
x(t)

∣∣∣2 + |∆ϕ (t)−∆ϕE (t)|2

σ2
n (t−T )+η +σ2

n (t)
(6)

where η is the so-called rotation factor equal to 2N0/σ2
p .

To visually understand the difference between the two metrics, the contour of equidistant curves for the Proposed
are also included in Fig. 1 (b), for the same simulation parameters as in (a). It is clear that, while the Original metric
shows irregular equidistant curves, the Proposed one exhibits an almost perfect match with the underlying density plot.

4. Simulation results

The simulation in [2] is reproduced here for a fair comparison. The transmitted signal is a chirped PAM4 with three
tested values of α: 2, 4, and 6, while c2 is kept at 0.5. For the phase noise, ∆ν = 10 MHz is used and the symbol rate
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Fig. 2. Top: BER versus SNR obtained with the 2-tap Viterbi algorithm (VA) using the Original
metric (square markers) and the Proposed metric (circle markers) in a simulated PAM4 CM-DML
system with adiabatic chirp coefficient c2 = 0.5, combined linewidth ∆ν = 10 MHz, a symbol rate
of 12.5 GBaud, and α being 2 (left), 4 (center), and 6 (right). A polynomial fit of the results (solid
line) and the theoretical BER curve for QPSK (dotted line) are shown for reference.

is 12.5 GBd. Figure 2 shows the computed (pre-FEC) BER after decoding with the VA algorithm proposed therein.
The curves, labeled as “Original” and “Proposed”, correspond to the cases where Eqs. (3), or (6) are used to compute
each transition distance, respectively. In order to quantify the benefit of the proposed algorithm over that previously
published we consider the SNR gains for a target BER of 10−3. For the case of α = 2 the SNR benefit of the proposed
algorithm at BER=10−3 is 1.2 dB. On increasing the value of α to 4 the SNR gain increases to 1.8 dB at a BER=10−3.
When α is increased to 6 the same 1.8 dB is also obtained for a BER of 10−3. Given that α = 4 is a representative value
for current commercially available directly modulated lasers [1], the results indicate that for 25 Gbit/s using 12.5 GBd
PAM4, the required SNR would be 11.9 dB using the proposed metric. While the performance is 2.1 dB worse than
the ideal QPSK case, given traditional PAM4 requires an SNR of 17.1 dB [5], the gain of using coherent detection is
5.2 dB. This gain makes this an attractive proposition for applications such as the ONU transmitter in access networks.

5. Conclusions

This paper deals with the problem of complex modulation of DMLs, focusing on a previously published technique
based on differential detection and a reduced-complexity version of the Viterbi algorithm. We have introduced an
alternative form in polar co-ordinates to compute the transition distance that, through numerical simulations, exhibit a
SNR gain of 1.8 dB at a BER=10−3 for a typical linewidth enhancement factor α = 4.
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