M3G.5.pdf

SUBCOM

SDM Power-Efficient Ultra High-Capacity Submarine Long Haul Transmission Systems (Tutorial)

Alexei Pilipetskii, Maxim Bolshtyansky, Dmitri Foursa, and Oleg Sinkin

250 Industrial Way West, Eatontown, NJ 07724 | apilipetskii@subcom.com

Abstract

Submarine long-haul systems have a unique set of challenges to address the capacity demand. The tutorial will examine the need for power efficiency, SDM solutions for capacity and greater economy, and ways to move forward.

Power Efficiency Metric

• Power efficiency for given system length can be defined as:

$$PE = \frac{Capacity}{Power}$$

• Power total electrical power provided to all repeaters

Tutorial will focus on optical side of power efficiency problem

Power Efficiency Impacts Cost Efficiency

- Why do we worry about power efficiency?
- Cost efficiency characterized as "cost-per-bit" or "cost-per-unit-capacity":

$$C_c = \frac{Cost}{Capacity}$$

• Cost efficiency expressed through power efficiency

$$C_{c} = \frac{Cost}{PE \cdot Power} \sim \left. \frac{Cost}{PE} \right|_{fixed \ cost}$$

4

- Examples: more power efficient system requires less power conductor
 - More power efficient system provides more capacity for the same cost

Footnote: the most power efficient case is not always the most cost efficient

Power Efficiency Impacts Cost Efficiency

- Why do we worry about power efficiency?
- Cost efficiency characterized as "cost-per-bit" or "cost-perunit-capacity":

$$C_c = \frac{Cost}{Capacity}$$

Cost efficiency expressed through power efficiency

$$C_{c} = \frac{Cost}{PE \cdot Power} \sim \left. \frac{Cost}{PE} \right|_{fixed \ cost}$$

- Examples: more power efficient system requires less power conductor
 - More power efficient system provides more capacity for the same cost

Footnote: the most power efficient case is not always the most cost efficient

Proprietary | © 2019 SubCom, LLC

Focus on what can be done optically for power efficiency

Undersea Systems and Power Efficiency

Undersea Cable Specifics

Ref: Frishch T. and Desbruslais S., "Electrical power, a potential limit to cable capacity," Proc. SubOptic 2013, paper TUIC-04, Paris, France, 2013

Power Related Important Parameters

- Signal to noise ratio
 - Number of amplifiers
 - Amplifier output power, NF, gain
 - Amplifier bandwidth
 - Fiber loss and effective area
- Optical amplifier power efficiency: laser pump power to signal power
- Electrical to optical pump power conversion
- Power delivery through the cable
 - Cable resistance and maximum voltage
 - Power feed circuitry for optimal power delivery

Ref: Frishch T. and Desbruslais S., "Electrical power, a potential limit to cable capacity," Proc. SubOptic 2013, paper TUIC-04, Paris, France, 2013

Cable and Fiber Capacity

Undersea Cable Capacity Evolution

- 5 orders of magnitude in cable capacity in single mode fiber transmission
- Even more orders of magnitude in cost per bit improvement
- Cable structure is largely unchanged
 - Power efficiency also had exponential growth

Single Mode Fiber Long-Haul Record Capacity

Single Mode Fiber Long-Haul Record Capacity

Single Mode Fiber Capacity with Coherent Rx

- Higher spectral efficiency
- Higher SNR
- Larger effective area lower loss fiber
- Nonlinearity mitigation
 and compensation
- Mirrored by the trends in actual system design
 - Higher SNR targets
 are decreasing PE

Techniques Used in SMF Results

Advanced Modulation Schemes with Variable Spectral Efficiency

- High OSNR Sensitivity
- Maximizing fiber capacity through maximizing SE
- Nonlinear mitigation
 - Large effective area 150 μm² low loss fiber
- Nonlinear compensation
 - Up to 1.5 dB
 - Transmission path design to take advantage of NLC-optimal launch power at every wavelength
 - 22.5 dBm in C+L bands

• *Maximizing SE is contrary to maximizing power efficiency*

Ref: Cai, J.-X., Batshon, H., Mazurczyk, M., et al.: "70.46 Tb/s Over 7,600 km and 71.65 Tb/s Over 6,970 km Transmission in C+L Band Using Coded Modulation with Hybrid Constellation Shaping and Nonlinearity Compensation", J. of Lightwave Tech., 2018, 36, (1), pp 114-121.

Shannon Limit

- 1.76 increase in SE requires 4x more SNR
- Large effective area fibers and nonlinear compensation are needed to operate at large SNR

System Design Philosophy Until Now

- Maximize Fiber Capacity
- Operate at Peak Performance
- Nonlinearity mitigation and compensation
 - Fiber choice
 - DSP
 - Future proofing

Shannon Limit, SDM, and Power Efficiency

Shannon Limit and SDM

Ref. R.-J. Essiambre and R. W. Tkach," Capacity Trends and Limits of Optical Communication Networks", Proc. of the IEEE, Vol. 100, pp 1035-1055, (2012) Ref: A. Pilipetskii, "High Capacity Submarine Transmission Systems", Tutorial W3G.5, OFC 2015

Reducing Nonlinear Power Penalty with SDM

- ~33% of optical power at peak performance is creating nonlinear noise
- SDM reduces nonlinear penalty
- Larger choice of fiber types

Shannon Limit and Modulation Formats

- Multiples ways to approach Shannon limit – Choice of spectral efficiency is available
- Known modulation schemes (with FEC) are about 2 dB away from Shannon limit
 - ~15 % capacity increase is still possible
 - Direct relation to power efficiency
- Potential SNR gain due to fiber loss reduction ~ 1 dB
 - Capacity increase~5-7%
 - Lower loss fibers lead to power efficiency

Power Efficient Modulation Formats

Ref. H. Zhang, et.al., "Power-Efficient 100 Gb/s Transmission over Transoceanic Distance Using 8-Dimensional Coded Modulation", ECOC 2015, Paper Th.2.2.1.

What Can Be Done Optically to Improve PE?

- Space Division Multiplexing
- Modulation formats
- Low loss fibers and components
- Amplifier bandwidth and spacing
 - -Transmission experiments
 - -Amplifier comparison

Transmission Experiments, Amplifier Comparison in Experiments

23

Power Efficient SMF Transmission Experiment

Ref. H. Zhang, et.al., "Power-Efficient 100 Gb/s Transmission over Transoceanic Distance Using 8-Dimensional Coded Modulation", ECOC 2015, Paper Th.2.2.1.

Power Efficient MCF Transmission Experiment

- 46km 12 core MCF spans
- 14,350km transmission
- 82X106.8 Gb/s per core
- 105.1 Tb/s capacity
- Total Pump Power = 800mW

Ref: A. Turukhin, et. al., "105.1 Tb/s Power-Efficient Transmission over 14,350 km using a 12-Core Fiber", Proc. OFC 2016, paper Th4C.1

Power Efficiency Boost in SDM Experiment

Ref: M. Mazurczyk et. al., Proc. ECOC 2012, Paper Th.3.C.2

Ref: A. Turukhin, et. al., Proc. OFC 2016, paper Th4C.1

• >4 x capacity improvement from single core to multiple cores with similar optical pump power consumption

Amplifier Architecture and Bandwidth

How to Compare PE in Different Experiments?

- Spectral efficiency (SE) and SNR only weakly depend on system length at optimal power efficiency
- Scale the results to the same reference length L_{ref} while keeping SE or SNR and capacity the same:

•
$$PE = \frac{Capacity}{Power_{at L}} \cdot \left(\frac{L}{L_{ref}}\right)^2$$

- *Power*_{at L} is the total optical pump power of all amplifiers in the system of length L
- The square scaling is due to
- Total power is proportional to the number of repeaters or system length
- Noise power grows nearly linear with system length, i.e for the similar SNR signal power should grow with distance too
- PE scaling with span length, span and other component losses:

•
$$PE = \frac{Capacity}{Power_{at L}} \cdot \left(\frac{L}{L_{ref}}\right)^2 \cdot \frac{Loss_{span}}{Length_{span}} \cdot \frac{Length_{span}^{ref}}{Loss_{span}^{ref}}$$

All units are linear

Example of testbed results scaled to 10,000km

Amplifier, transmission distance, SE	Scaled PE for System Length Span loss and length 	Reference
SMF 20-nm C-band, no GFF, 9750km, SE=3.2	100	ECOC 2015, Paper Th.2.2.1
MCF: 22-nm C-band, no GFF, 14350km SE=3.2	98	OFC 2016, paper Th4C.1
C+L: 20-nm C-band 30 nm L-band, no GFF, 14000 km SE=2.2	71	ECOC 2018, paper Mo4G.4
Micro-assembly amplifier: 40 nm C-band, GFF, MCF, 12500km, SE=2.2	84	OFC 2019, paper M2I.4

- PE impacted by bandwidth, amplifier design and amplifier components, SE,
- Full C-Band affected by GFF and higher micro-assembly losses
- Span loss budget is important

Comparison of PE of C+L vs. C-Raman amplifiers

- Schemes compared at peak performance: SDM will favor EDF even more
- Raman/EDFA scheme required ~2x power to achieve extra 10% capacity

SDM Extends Capacity Growth

- Power efficient SDM with SMF extends exponential capacity growth
- For how long? Is it economical?

SDM Cable Capacity Publications

- 1. A. Pilipetskii, "High Capacity Submarine Transmission Systems", Tutorial W3G.5, OFC 2015
- 2. A. Turukhin, et. al., "105.1 Tb/s Power-Efficient Transmission over 14,350 km using a 12-Core Fiber", paper Th4C.1, OFC 2016.
- 3. E. Mateo, et. al., "Capacity Limits of Submarine Cables", paper TH1A.1, SubOptic 2016.
- 4. A. Pilipetskii, et. al., "Optical Designs For Greater Power Efficiency", paper TH1A.5, SubOptic 2016.
- 5. O. D. Domingues, et. al., "Achievable Rates of Space-Division Multiplexed Submarine Links Subject to Nonlinearities and Power Feed Constraints", *JLT*, vol. 35, pp. 4004, 2017.
- 6. J. D. Downie, "Maximum cable capacity in submarine systems with power feed constrains and implications for
- 7. SDM requirements", Proc. ECOC 2017, paper Tu 1.E.4
- 8. J. D. Downie, "Maximum Capacities in Submarine Cables With Fixed Power Constrains for C-band, C+L band and
- 9. Multi-core fibers", JLT, vol. 36, p 4025, 2018
- 10. O. V. Sinkin, et. al, "SDM for Power-Efficient Undersea Transmission", JLT, vol. 36, p. 361, 2018.
- 11. P. Pecci, et. al., "Pump Farming As Enabling Factor To Increase Subsea Cable Capacity", paper OP14-4, SubOptic 2019

SDM 1.1: Dunant Cable System

*https://www.wired.com/story/google-cramming-more-data-new-atlantic-cable/

- "Dunant undersea cable connects the U.S.A. and France, it will transmit 250 Terabits of data per second"*
- "Dunant will be the first cable in the water to use space-division multiplexing (SDM) technology"*
- New generation of high capacity SDM 1.1 cables: 200-400 Tb/s per cable capacity

Noise Accumulation in EDFA Chains and Optimal Power Efficiency

EDFA Chains and Noise Accumulation

EDFAs operate in saturation (gain compression)

- Total EDFA power including signal and ASE noise is ~ constant
- Effect of "signal droop" is important in low amplifier output power regimes
 - Important consideration for SDM, when optical power divided between optical paths

Questions to address:

- At what SE and SNR optimal EDFA pump power efficiency is achieved?
- Formalism to take into account signal droop for SNR calculation after chains of EDFAS

Black Box Model of EDFA Chain

- The smallest amount of assumptions (expecting Occam's razor to work)
- $PE \sim \frac{\log_2\left(\frac{P_a}{Noise}\right)}{\alpha P_a} \bigg|_{P_a = Noise \cdot (SNR+1)} \sim \frac{\log_2(SNR+1)}{(SNR+1)}$
- This expression has optimum at SNR = 2.4dB or SE=2.89 b/s/Hz if operating at Shannon limit
- This optimum does not depend on anything! (no system length, no span length dependence)
- Reasonable agreement with experiment

Ref: O. Sinkin et. al., *"Maximum Optical Power Efficiency in SDM-Based Optical Communication Systems"*, IEEE Phot. Tech. Lett., Vol.29, pp 1075-1077, (2017).

Experimental Study of Optimal Power Efficiency

- Tested at two different system length 8.8 and 14.3 Mm
- The results are near "Black Box" model
- Optical pump power to EDFA was used in place of electrical *Power*

Ref: O. Sinkin et. al., "Maximum Optical Power Efficiency in SDM-Based Optical Communication Systems", IEEE Phot. Tech. Lett., Vol.29, pp 1075-1077, (2017).

Signal Droop Model

System as concatenation of identical blocks-amplifiers plus span with amplifier output powerPa

In Block
$$In \cdot G$$

 $Noise_1$ $P_a = In \cdot G + Noise_1 = const for all blocks \longrightarrow G \equiv \frac{P_a - Noise_1}{In}$

- Blocks are identical, $In \equiv P_a$ and
- $G = \frac{P_a Noise_1}{P_a} = 1 \frac{Noise_1}{P_a}$
- Signal at the link output with *N* blocks:
- Noise at the link output:
- Signal droop model is a good and convenient calculator for system SNR with given Pa, NF, gain

Ref: J-C. Antona, et. al., "Transmission Systems with Constant Output Power Amplifiers at Low SNR Values: a Generalized Droop Model", Proc. OFC 2019, paper M1J.6. Ref: J. D. Downie, et. al., "Extension of SNR droop model for constant output power Amplifier systems," Proc. ECOC 2019, paper W.1.D.6.

Signal Droop vs Black Box: PE Predictions

• Reason: $Power = \alpha P_a$ is not good approximation at low P_a , but it can be fixed by ignoring ASE Noise dependence on P_a

Optimal PE and Signal Droop Model

- Signal droop model properly calculates SNR at the end of the chain
- How to make it work for PE problem?

$$PE \sim \frac{-\log_2(1-G^n)}{Power}$$
 Definition of power?

- Assumption of electrical or optical pump powe $Power = \alpha P_a$ is not accurate for small amplifier powers
- **1. Optical Pump Power** to EDFA case: *Power* is optical pump power to EDFA, approximated as $\sim P_a + \Delta_1$
- 2. **SDM** case: *Power* is optical pump power to EDFA split between SDM paths, $\sim (P_a + \Delta_1)/Loss_{split}$
- **3.** Electrical Pump Power case: *Power* is electrical pump laser power, approximated as $\sim P_a + \Delta_2$

Amplifier Model: Simulation Example

monitoring

- $\Delta_1 = 6 \text{mW} \cdot c$; c = 5.9 dB: EDFA pump to signal conversion
- Assumption $\Delta_2 = 3 \cdot \Delta_1$; for ~20mA threshold current of pump
- For SDM case, pump power 800mW and 0.15dB loss per splitter + splice

41

Optimal PE Point: Experiment vs. Simulation

- Experimental PE was done vs. optical pump power into EDFA
- The location of optimums in the simulations are close to the experiment

SDM Case: Important Case for PE Optimization

Fixed everything, including <u>pump power</u>, repeater spacing, cable resistance, electrical circuitry, etc.

- Only SDM index is adjusted through network of pump splitters
- Loss of splitters can be estimated as (Splitter + Splice losses) · log₂(SDM_{index})
- Changing SDM index allows to optimize PE keeping electrical parameters constant

Optimal Power Efficiency: Comparison of Models

44

- Black Box is close to SDM, and Optical Pump to EDFA models at Trans-Atlantic distances
- Electrical Model loses a lot of power to current threshold
 - Run pump lasers at design power and split through network of SDM couplers

Techno-Economic Models: Can SMF Based SDM System be Economical?

45

Techno-Economic Models in the Recent Literature

- R. Dar, et. al., "Submarine Cable Cost Reduction Through Massive SDM", paper Tu.1.E.5, ECOC 2017
- R. Dar, et, al., "Cost Optimized Submarine Cables Using Massive Spatial Parallelism"," JLT, vol. 36, p3855, 2018
- M. Bolshtyansky, et. al, "Cost-optimized Single Mode SDM Submarine Systems," paper OP18-1, SubOptic 2019
- M. Bolshtyansky et. al., "Single Mode Fiber SDM Submarine Systems", to be published in JLT
- •
- J. Downie, et. al., "On the Potential Application Space of Multicore Fibres in Submarine Cables", paper M.1.D.4, ECOC 2019

Economic Optimization of an SDM 1.1 Cable – SMF Technology

Number of SMF Fibers for up to Pb/s Cable Capacities

- Every point on distance capacity plot is cost optimized
- Example for 80 mm² fiber
- Full C-band
- Cable size should grow to accommodate more fibers
 - Larger cable has larger conductor

SE in Cost Optimized Solutions

- Every point on distance capacity plot is cost optimized
- SE is mostly the function of distance, but not capacity
 - Results from assumption of larger cables for larger capacity
 - SE is Above PE optimum
 - Operation 3 dB away from Shannon limit
 - Operation at 6 dB away from Shannon limit results in ~2.5 bit/s/Hz minimal SE

How Linear Systems Should Be?

Level of Nonlinearity:

- Systems are not fully linear for large parameter space
 - Not power starved area
 - Cost Optimum ~ -1 dB from nonlinear peak
- Systems are close to linear in power starved area

50

"Cost Per Bit Crunch"

"Cost per bit crunch" problem:

• Increasing amount of fibers per cable gives diminishing cost per bit returns

"Cost Per Bit Crunch"

System Capacity and/or Cost

- Cost-per-Capacity improves with system capacity
- Improvement saturates for large capacity
- Technology disruption is needed to break the trend

What is Next?

- Higher levels of integration to save space and cost?
 - Transmission in MCF, MMF? Amplifier micro-assemblies? SOA?
- Power efficiency together with costs will be part of the equation

1. R. Ryf., et. al., "Coupled-Core Transmission over 7-Core Fiber", Proc. OFC 2019, paper Th4B.

2. K. Shibahara, "DMD-Unmanaged Long-Haul SDM Transmission Over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF Employing Intermodal Interference Cancelling Technique", Proc. OFC 2018, paper Th4C.6.

3. A. Turukhin, et. al, "Demonstration of Potential 130.8 Tb/s Capacity in Power-Efficient SDM Transmission over 12,700 km Using Hybrid Micro-Assembly Based Amplifier Platform", Proc. OFC 2019, paper <u>M2I.4</u>

4. J. Renaudier, et. al., .: '107 Tb/s Transmission of 103-nm Bandwidth over 3x100 km SSMF using Ultra-Wideband Hybrid Raman/SOA Repeaters'. Proc. OFC 2019, paper Tu3F.2

Conclusions

- Power efficiency is important for the current and next generation undersea systems
- Optical factors affecting power efficiency: loss, amplifier design and bandwidth, signal droop, modulation scheme and spectral efficiency
- SDM allows to manage power efficiency and capacity
- Techno-economic models lead to practical optimized power efficient SDM solutions

Thank You