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Abstract: In this paper, we use standard silicon-photonic components in order to im-
plement a neuromorphic circuit with two neurons. The network exhibits reconfigurable
weights and nonlinear transfer functions, enabling high-bandwidth analog signal process-
ing tasks. © 2020 The Author(s)
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1. Introduction

Neuromorphic photonics has recently attracted attention as a promising avenue for specialized, “more-than-
Moore” computing hardware. It is a photonic technology that is uniquely suited to process analog, multi-variate,
high-bandwidth signals by using nonlinear units emulating neurons in artificial neural networks. Neuromorphic
photonic circuits can be manufactured using silicon photonics standard fabrication processes, by use of active op-
toelectronic devices and homogeneous- or heterogeneously-integrated infrared light sources. Such processes are
now accessible via low-cost fabrication prototyping services and open-source design kits [1].

In this paper, we demonstrate real-time functionality of a small set of neurons applying a nonlinear transforma-
tion on a pair of analog signals. As we will show, these neurons can be reconfigured to provide different transfer
functions or apply different synaptic weights. Mastering these operations is crucial for using a neural network as
an analog computer performing low-latency classification tasks and quadratic programs [2].
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Fig. 1. (a) Description of the silicon photonic neural network under test in this experiment. This net-
work is a subset of the larger network on chip, which consists of 4 neurons with recurrent connec-
tivity (the output is partially coupled back to the input). (b) Experimental detail showing a V-groove
fiber holder coupling light into the chip. The chip is mounted onto a plastic leadless chip carrier with
84 pins.

2. Device Description

The neural network was manufactured on a silicon photonic integrated circuit with high-speed optical ports cou-
pled to optical fibers, and low-speed electric ports for biasing and configuration. Fig. 1(a) describes the integrated
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circuit and its inputs and outputs. It is important to note, that the neuromorphic functionality of the circuit is
entirely contained within the chip – the instruments outside the chip are used for generating and collecting sig-
nals, and biasing optoelectronic devices on chip, such as microring weight banks, microring modulators and pho-
todetectors. Parts of this system were described and individually demonstrated using the same silicon photonics
platform [3, 4] (refer to these references for a more detailed experimental setup).

Here, we demonstrate simultaneous operation and control of two neurons networked together. There are two
types of electrical traces in the circuit (Fig. 1(a)): a DC-type control traces used to bias the microring weight bank
and the microring modulator (ports N, H, P, GND); and a high-speed link between the balanced photodiode, which
is kept short to prevent parasitic capacitance and transmission-line effects. Only DC signals are connected outside
the chip and into the printed-circuit board (PCB) (Fig. 1(b)). However, without proper biasing, AC signals leak to
the PCB via the N-port. For that reason bypass capacitors were added on-chip and off-chip between ports V+/V–
and P, as well as a ferrite bead in series before each port N. Without them, the PCB traces together with connected
DC cables form a L-C resonator across V+/V– and N, which get excited by the balanced photodetector at around
50 MHz, which deforms the waveforms we are interested in investigating.

3. Single-variable Transfer Function

(a) (b)

Fig. 2. (a) Neuron 1 output waveforms when excited by a 50 MHz sinusoidal waveform under dif-
ferent heater biasing currents applied to port H. (b) X-Y scatter plot corresponding to each biasing
conditions in (a). These indicate an experimentally-measured AC transfer function. The x-axis was
normalized for convenience, whereas the y-axis was centered around the lowest point of the sinu-
soid, in order to help visualize the transfer function shapes. The hysteresis effect is caused by limited
bandwidth of the circuit – if bandwidth was infinite, the X-Y lines would not have holes inside them.

Biasing procedure First, we applied current onto the on-chip heater to bring each MRR modulator to resonance.
Second, we apply a forward-bias current on the PN-junction of the modulator until the onset of the diode (requires
a non-zero current because of the parallel RTIA present in the circuit – see Fig. 1(a)). Then, we reverse bias each
photodetector via ports V+/V– and N by −2 V. For simplicity, we biased the weight banks off-resonance so that
all the optical power would impinge on the THRU photodetector, corresponding to a “–1” weight on the neuron.

Operating principle We send amplitude-modulated waveforms multiplexed into the resonant wavelength λ1,
causing the generation of photocurrents proportional to the optical power (∼0.8 A/W responsivity). Because of the
high-impedance of port N, all the current is directed across the modulator, which is the path of lowest impedance.
This modulates the resonance wavelength of the modulator, affecting the amplitude of the output at that wave-
length. We measured this output off-chip with a high-speed sampling scope (Fig. 2 (a)).

Individual neurons has Lorentzian-tail-shaped transfer functions (TFs) because of the microring modulators
resonance optical spectra. These Lorentzian TFs can be manipulated by changing the biasing on each microring
modulator (Fig. 2 (b)). Interestingly, we can create a range of TFs based on which side of the Lorentzian bell-
shaped curve we bias the MRR on.

4. Multi-variable Transfer Function

Operating principle To demonstrate the functionality of a network, we explore real-time nonlinear transforma-
tion of a 2-dimensional time series. The biasing procedure and the operating principle are similar to the ones in
the previous section. Here, however, we modulate a 32-bit PRBS waveform clocked at 294 MHz onto both λ1 (A)
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Fig. 3. Simultaneous transfer function of neurons 1 and 2. Input (black), Measured outputs of neuron
1 (red) and neuron 2 blue) after wavelength-demultiplexing (not shown in Fig. 1).

and λ2 (B). However, the one in λ2 is offset by exactly two bit periods. Since the weights are set to –1 each, both
neurons are modulated with an inverted A+B waveform. Figure 3 shows the output of both neurons in this con-
dition. We biased neuron 1 at 1.66 mA and neuron 2 at 1.68 mA so that they exhibited different transfer functions
(Neuron 1 ReLU-like and Neuron 2 sigmoid-like). Neuron 1 is biased so that it suppresses the positive side of the
input pattern whereas Neuron 2 amplifies it slightly. This behavior result matches the transfer functions shown in
Fig. 2(b).

5. Conclusion and Outlook

There are two main advantages of architecting a photonic neuron with optical-electrical-optical (O/E/O) stages
such as the one in this paper: first, it allows us to have high fan-in with high signal bandwidths thanks to
wavelength-division multiplexing; second, it makes the neuron cascadable, since it generates an output spatially
and spectrally isolated from its inputs. These two features allows us to network multiple layers of neurons, where
one drives the next, to demonstrate low-latency nonlinear computations. They also allow us to connect the out-
put of the neuron back to its input (not shown here), allowing for a recurrent neural network, enabling quadratic
programming applications [2].
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