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Abstract: We present a photonic neuromorphic network using DFB-LDs for spatiotemporal 

pattern recognition. Complete input patterns are investigated theoretically and experimentally. The 

output peak powers decrease with the difference between the target pattern and other patterns. © 

2020 The Author(s) 

 

1. Introduction 

In recent years, the demand for high-speed and efficient information processing has triggered a rising interest in 

neuromorphic photonics [1-3]. Relying on ultrafast pulse generation, low energy dissipation, and dynamics with 

biological plausibility, neuromorphic photonics has great potential to be applied in different scenarios, such as 

realizing a parallel neuromorphic computing framework [4] or a novel brain-inspired system for specific tasks [5]. 

As the fashion of information interaction in spiking neural network, spatiotemporal patterns are ubiquitous in 

various sections including coding, processing, and decoding. Through the introduction of the time variable, 

spatiotemporal patterns enrich the complexity of information expression at a superb energy efficiency, giving rise to 

perplexities for recognition. Therefore, the fast, accurate, and target-adjustable spatiotemporal pattern recognition is 

indispensable for neuromorphic photonics. 

In both the electrical and optical domains, there have been some studies about pattern recognition [6,7]. In [6], 

spatiotemporal pattern recognition is demonstrated through resistive switching synapses at a magnitude of ~ms (near 

to the biological counterpart). More recently, an all-optical phase-change-material-based (PCM) network is 

presented and the performance on pattern recognition is evaluated [7]. Due to the limitation placed by the switching 

of PCM, the network is capable of spatial-only pattern recognition with a capacity of 2N (e.g. patterns like “1100”, N 

stands for the number of input branches). Here, we propose a photonic neuromorphic network based on distributed-

feedback-laser-diodes (DFB-LDs), which emulates the dynamics of biological membrane potential for 

spatiotemporal pattern recognition. 

2. Principle of the network 

In Fig. 1, the DFB-LD-based photonic neuromorphic network consists of an input layer with N DFB-LDs, a 

weighted addition module, an output layer with a single DFB-LD, and a spike-timing-dependent-plasticity (STDP) 

module. The upper schematic shows the processing of the input pattern. At first, an input pattern includes N spike-

timing-varying spikes separately located at N input branches. It is assumed that every spike occupies one of the N 

 
Fig. 1. Schematic of the DFB-LD-based photonic neuromorphic network, including an input layer, a weighted addition module, an output 

layer, and a STDP module for weight update. DFB-LD: distributed-feedback-laser-diode. VOA: variable optical attenuator. PD: 

photodetector. PC: power combiner. STDP: spike-timing-dependent-plasticity. 
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time steps for simplicity. The DFB-LDs reshape the spikes into exponentially-decaying shapes (denoted as Ved). 

Then, the weight is given by variable optical attenuators (VOAs), followed by the O/E conversion in photodetectors 

(PDs) and the power combiner (PC) for the weighted Ved. Finally, the membrane-potential-like dynamics is 

generated in the DFB-LD of output layer (denoted as Vmem). It reaches peak value only when the weight distribution 

is positively correlated with the spike timings (e.g. w1<w2<w3 for target pattern “1 2 3”), thus realizing the 

spatiotemporal pattern recognition. 

Note that the spectrum width of the spikes should slightly exceed the direct-modulation bandwidth of DFB-LDs 

for the generation of Ved and Vmem, hence the time scale of the network is determined. Vmem reflects the temporal 

interaction among the spikes in various input patterns. Through the rate equation of DFB-LD [8], we simulate the 

peak powers of Vmem for all A
N 

N  input patterns. In the case, the spike is Gaussian-like with a width (full-width-at-

half-maximum, FWHM) of 10 ps and the time step is 50 ps. As is shown in Fig. 2, the target patterns contribute to 

the highest peak powers in all cases (N=3, 4, 5, and 6 for (a), (b), (c), and (d), respectively). At the same time, the 

peak powers decrease with the difference between the target pattern (red) and other patterns (blue). Below the x-axis, 

there are indicators of weight distribution and input patterns. In fact, the discrimination of threshold is determined by 

the signal-to-noise ratio of the link. Here we consider a typical 0.02 dB loss resolution of a commercial VOA and set 

the threshold regardless of any noise. The recognition accuracy is estimated at a condition of uniform possibility for 

each input pattern and marked in the Fig. 2. Accordingly, the ability to recognize spatiotemporal patterns of the 

proposed network is verified.  

3. Experimental results and discussion 

Experimental setup, results, and a learning scheme via a STDP module for the network are presented by Fig. 3. In 

Fig. 3(a), three DFB-LDs (Emcore-Ortel, 1751A-35-BB-FC-10), VOAs, balanced-PDs (fsphotonics, FS-PD-B-

2030), and a power combiner (Mini-Circuits, ZFRSC-123+) are used to investigate the network at N=2. In addition, 

input patterns are generated by an arbitrary waveform generator (AWG, Keysight M8195A). Besides, an 

oscilloscope (Keysight, DSO-S 804A) monitors the output. Note that the DFB-LDs are driven by laser diode 

controllers (Thorlabs, lTC4001) with an external modulation bandwidth of 150 kHz. Figures 3(b) and 3(c) indicate 

the results of two input patterns with a peak amplitude of 206 mV for the target pattern “1 2” and 160 mV for 

another pattern “2 1”. The spike width is 1 μs and the time step is 2 μs for N=2. Performed by Fig. 3(d), for the cases 

N=3 and 4, we consider the weighted-addition results as the input to test the DFB-LD in the output layer. Figures 

3(e) and 3(f) indicate that the peak amplitude is 204 mV and 149 mV for input pattern “1 2 3 4” and “4 3 2 1”, 

respectively. It is noteworthy that the pump trace is monitored by the R6 port on the rear panel of the laser diode 

controller. The spike width is 1 μs and 0.5 μs corresponding to N=3 and N=4 with a time step of 2.5 μs and 1.3 μs, 

respectively. Ultimately, the complete input patterns are shown in Figs. 3(g) (N=3) and 3(h) (N=4). It can be 

 
Fig. 2. Simulation results of peak powers induced by different input patterns. The cases that N=3, 4, 5, and 6 correspond to (a), (b), (c), and 

(d), respectively.  
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observed that the trends match well with the simulation results in Fig. 2, which demonstrates the validity of the 

network for spatiotemporal pattern recognition.  

In Fig. 3(i), we present the learning ability for arbitrary target pattern recognition through the STDP module in 

Fig. 1, which is feasible for all A
N 

N  input patterns. As an example of target pattern “2 1 3 4”, a teacher signal as the 

postsynaptic input (marked in Fig. 1) is sent to the STDP module following the final time step. By the time-

difference-dependent potentiation of STDP, the weights can be updated in an unsupervised manner. Consequently, 

the positive correlation between spike timings and weights is achieved and the network has learnt a new target 

pattern for recognition.  

4. Conclusion and future work 

A DFB-LD-based photonic neuromorphic network is theoretically and experimentally demonstrated for A
N 

N  

spatiotemporal patterns recognition. Besides, a STDP-assisted unsupervised learning scheme of arbitrary target 

pattern for the network is performed. Future work includes the improvement of recognition accuracy by 

optimization of weights, the analysis about spike widths and time steps corresponding to various modulation 

bandwidths of the DFB-LD, and the demonstration of STDP-assisted unsupervised learning ability of the network. 
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Fig. 3. Experimental setup and results for the proposed network, as well as the schematic of learning target pattern with a STDP module. (a) 

Experimental setup when N=2. (b, c) Results for input patterns of “1 2”and “2 1”. (d) Experimental setup when N=3 and 4. (e, f) Results for 

input patterns of “1 2 3 4” and “4 3 2 1”. (g, h) Results for complete input patterns when N=3 and 4. (i) A STDP-assisted learning scheme. 

DFB-LD: distributed-feedback-laser-diode. VOA: variable optical attenuator. B-PD: balanced-photodetector. PC: power combiner. STDP: 

spike-timing-dependent-plasticity. 


