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Abstract: We demonstrate an autoencoder scheme that utilizes readily available adaptive filter 

coefficients to accurately detect and identify soft-failures in optical links with >99% accuracy. 

Detected impairments include low OSNR, nonlinearity, ROADM filtering and adjacent-channel 

crosstalk.  

 

1. Introduction 

Optical networks are prone to multiple link impairments. If left unidentified and unmanaged, they can lead to severe 

service disruption. Current optical network failure management (ONFM) systems rely on complex and time-

consuming human methodologies to combat these issues. However, as networks scale and become more flexible, it 

becomes important to automate ONFM systems. In recent years, machine-learning (ML) methods have attracted a 

lot of attention to improve these ONFM systems [1-4]. Nonetheless, these techniques have their own limitations. 

Methods that utilize pre-FEC BER captured over long durations (>5 minutes) to accurately detect and identify 

impairments have been previously investigated in [1,2]. However, in many instances, such durations may not be 

desirable. Support vector machines (SVM) employing filter coefficients as features to detect impairments were 

explored in [3], but the methodology provided no solution to identify the cause of the impairments. A dual stage 

scheme that detects impairments using the pre-FEC BER and received optical power [4], and along with the optical 

spectra employs a semi-supervised SVM scheme to identify the impairment was also investigated. However, this 

technique can only identify impairments that directly affect the optical spectra.  

Here, we propose a dual stage scheme that utilizes readily available adaptive filter coefficient (AFC) at the 

receiver DSP to detect and identify impairments in optical links. We experimentally demonstrate that the technique 

easily detects impairments arising from ROADM filter impairments, OSNR degradation, interchannel interference 

(ICI) and fiber nonlinearity (NL) well before the pre-FEC BER reaches the SD-FEC limit. Additionally, whenever 

an impairment is detected, the technique identifies the cause of the impairment with >99% accuracy.  While the 

identification scheme is limited by what impairments it is trained for, the detection scheme can in principle detect 

any impairments and is not limited to the four described above.  

2. Methodology 

The technique consists of two steps – Impairment prediction/detection based on autoencoders and impairment 

identification based on a feed forward neural network, Fig. 1. Autoencoders are a type of neural network that are 

u1

u2

u3

un-2

un-1

un

v1

v2

vm-1

vm

ũ1

ũ2

ũ3

ũn-2

ũn-1

ũn

Input 

Layer
Output 

Layer

Hidden 

Layer

+-

Reconstruction 

Error

Average

Feedforward Neural Network 

based Impairment Identification

Impairment 

Detection

Yes

O
p
ti

ca
l 

L
in

k

CD post 

compensation

Timing 

Recovery

Polarization 

Demultiplexing

Frequency 

Offset Removal

Carrier Phase 

Recovery

Channel 

Equalization

Autoencoder

Demodulation 

Scheme

 
Figure 1: Two step impairment detection and identification scheme based on autoencoders. The input to the autoencoder is the adaptive filter 

coefficients used at the receiver DSP. The mean reconstruction error (MRE) from the autoencoder is used to detect impairments. If detected, 

the reconstruction error is sent to a feed-forward neural network to identify the cause of the impairment.  
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used to efficiently learn how to compress data in an unsupervised manner [4]. They typically consist of three layers, 

the input layer, the hidden layer and the output layer. During training, the network constructs a code for the input in 

the hidden layer and then reconstructs the input from the code in the output layer. The performance of the network is 

assessed based on how close the input and the output are. The size of the code is determined by the user and is equal 

to the number of neurons in the hidden layer. The error between the input and the output is called the reconstruction 

error. In the event that the input is not representative of the training data, the reconstruction error will be large. We 

utilize this feature of an autoencoder to detect impairments in the link. 

Here, the input to the autoencoder is the absolute value of the AFCs from the receiver DSP. The autoencoder is 

trained on multiple AFCs obtained from our experimental setup under normal operations. The input size is 182 and 

the code size is fixed to 10. Other code sizes were explored, but 10 provided the optimum tradeoff between code 

size and performance. Note that perfect reconstruction can never be achieved since the AFCs vary slightly based on 

the noise statistics in the link and because there is loss of information based on how large your code is. Therefore, 

even under normal operation, the reconstruction error will conform to a probability distribution with appropriate 

attributes. Once fully trained, we compute the mean reconstruction error (MRE) for the AFCs under normal 

operation and fit it to a probability distribution function (PDF), Fig. 2(a). A log-normal distribution was chosen to fit 

the reconstruction error distribution.  

In the event of an impairment, the AFCs will react to the impairment to reduce its effect on the signal. Since 

these AFCs are not representative of the AFCs under normal operation, the reconstruction error will be large and the 

MRE would lie in the tail of the PDF, Fig. 2(b-c). By appropriately defining this region, we can detect any 

impairment affecting an optical link. Here, we set this region to occupy 10% of the total tail probability.  

When an impairment is detected, the reconstruction error is sent to a feed forward neural network to identify the 

cause of the impairment, Fig. 1. In this work, we employ a simple neural network with 1 hidden layer and 10 hidden 

neurons. The output is one of the four impairments included in the training data – ICI, OSNR degradation, ROADM 

filter induced penalties or NL. Additionally, using the soft outputs from the neural network, we test the capability of 

the neural network to detect multiple impairments affecting an optical link.  

3. Experimental Setup 

We use a 3-channel 32GBaud DP-QPSK link to validate our impairment detection and identification scheme, Fig. 3. 

Under normal operation the link OSNR is set to 14 dB (corresponding to BER ~ 10-3), the WSS is set to 37.5 GHz, 

the side channels are spaced at 37.5 GHz and the fiber launch power is set to 2 dBm. Conventional receiver side 

DSP is used to process the data [5]. In order to test our algorithm, we artificially introduced impairments in the link 

by applying the following changes 

 Varying the interchannel spacing between 15 and 35 GHz to introduce ICI 

 Adding ASE noise to the link to degrade the OSNR and vary it between 7 and 14 dB 

 Changing WSS bandwidth between 20 and 36 GHz to introduce ROADM filter induced penalties 

(a) (b) (c)

Figure 2: Distribution of MRE for (a) normal operation (b) link launch power = 9 dBm (c) link launch power = 9 dBm and WSS bandwidth  
= 24 GHz. The log-normal distribution used to fit the MRE under normal operation is described in blue.  
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Figure 3:Experimental Setup employing 3 channels at 32GBaud DP-QPSK 
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 Changing fiber launch power between 3 dBm and 10 dBm to introduce NL penalties 

We considered the following thresholds as impairments: Interchannel spacing ≤ 30 GHz, launch power ≥ 6 dBm, 

ROADM filter bandwidth ≤ 30 GHz and OSNR ≤ 11 dBm. The thresholds were chosen based on the experimental 

setup and the associated signaling rate. Thresholds need to be appropriately modified for other links.  

4. Results 

Figure 4 shows the performance of the impairment detection scheme. The red curves show the evolution of pre-FEC 

BERs as a function of various impairment parameters and the blue stems show the scheme’s detection accuracy. For 

the thresholds described above, the scheme is able to detect impairments with near 100% accuracy well before the 

BER hits the SD-FEC limit at 2.2x10-2. Note, the method also detects certain impairments before the threshold is 

reached, but the detection accuracy is low since the MRE is close to the threshold (tail probability < 10%).  

We then test the accuracy of the impairment identification scheme. Figure 4(e) shows the confusion matrix of the 

feed forward neural network describing the sources of classification errors for the four impairments investigated 

here. The network is able to identify impairments arising from ROADM filters, OSNR degradation and ICI with 

100% accuracy; however there is a small error (<1%) when detecting impairments arising from NL. These 

impairments tend to be misclassified as OSNR degradation possibly because these two impairments manifest 

similarly for QPSK signals [7]. Finally, we test the schemes performance in the presence of multiple impairments, 

Fig. 4(f). In the presence of two impairments, the scheme is able to identify at least one of the impairments with 

>98% accuracy and both impairments simultaneously with > 70% accuracy. While the performance of identifying 

multiple impairments simultaneously is poor, the method is able to identify at least one impairment with high 

accuracy and if the impairments are solved sequentially, both impairments will be identified accurately.  

5. Conclusions 

We presented a novel technique to detect and identify multiple impairments in optical links using a two-step 

machine learning technique utilizing autoencoders. By choosing AFCs as the input features, we demonstrated that 

both impairment detection and identification can be achieved with accuracies >99%. The impairment identification 

scheme can be extended to include other impairments based on the availability of appropriate data affected by those 

impairments. This technique can be employed in ONFM systems to automate the fault management process and 

reduce service disruptions.  
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Figure 4: Performance of the impairment detection scheme along with the pre-FEC BER in the presence of impairments caused by (a) 

Interchannel interference (ICI), (b) Fiber Nonlinearity (NL) (c) ROADM filters (d) OSNR degradation. (e) Confusion matrix of the 

feedforward neural network used to identify impairments. Class 1 – NL, 2 – ROADM filter anomalies, 3 – OSNR degradation and 4 - ICI (f) 
Performance of the neural network in the presence of multiple impairments.  


