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Abstract: Experimentally observed long-tail fast BER (10ns–1µs) histogram (FBH) in presence of 

NLIN is explained through simulation.  Features from FBHs are applied to train an ANN to estimate 

linear and nonlinear NSRs with <5% error. © 2020 The Author(s) 

 

1. Introduction 

 

As demand for higher capacity is increasing, the ability to characterize channel conditions accurately and reporting it 

to higher network layers for performance optimization is becoming crucial. Signal-to-noise ratio (SNR) is the most 

important channel parameter to be monitored, as it directly affects overall system performance and quality of 

transmission. Various noise sources degrade the SNR in optical communication systems. The two major noise sources 

are amplified spontaneous emission noise (ASE) and nonlinear interference noise (NLIN). ASE results from Erbium 

doped fiber amplifiers that compensate propagation losses, and NLIN is result of interactions among all 

electromagnetic waves within the optical fiber [1]. The total SNR at the receiver is 
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where 𝜎𝐴𝑆𝐸
2 , 𝜎𝑇𝑅

2 , and 𝜎𝑁𝐿
2  represent ASE, transceiver implementation noise, and NLIN powers, respectively. 𝑃𝑐ℎ 

denotes channel launch power. Accumulated noise from ASE and transceiver is referred to as linear noise. For better 

management/optimization of the optical network, fault detection, and margin estimation, it is highly desired to monitor 

and resolve the linear noise and NLIN contributions separately.  Analytical models such as the extended Gaussian 

noise (EGN) model [1]  provide accurate predictions of nonlinear noise power, when all information about the light 

propagation path such as  fiber parameters, neighboring channels, modulation format, symbol rate, and transmitted 

power is available. In practice, such detailed information is not readily available in optical networks. NLIN exhibits 

temporal correlation properties that differentiates it from linear (ASE) noise [2] and could be used to separate linear 

and nonlinear noises. In recent years, several approaches have been proposed to monitor the nonlinear noise. The 

works presented in [3,4] examine the difference in the temporal correlation and constellation geometric shapes 

between the ASE noise and NLIN, and uses artificial neural networks (ANNs) to separate those two noise 

contributions at the Rx DSP. In [5], the proposed algorithm employs an amplitude modulated pilot tone and zero-

power gaps in the amplitude of the transmitted signal to directly measure the ASE and the NLIN. In a recent work [6], 

we reported on existence of long tails in measured fast (10 ns – 1 us) BER histograms (FBHs) in presence of nonlinear 

noise. This proof of concept work has considered a fixed link comprising of 12 spans of 80 km s with 40 WDM 

channels operating close to the threshold BER. In practice, link propagation parameters and average BER operation 

point could vary broadly. In particular, average BER operation point could be far from the threshold BER.  

In this paper, we apply a simulation approach based on estimation of the temporal properties of nonlinearities through 

time-varying ISI matrices [2] to reproduce experimentally observed long-tail FBHs with excellent agreement. We 

expand our previous contribution [6] over an extensive set of realistic simulation conditions that covers various total 

SNR values (average BER), launch powers, number of spans, and number of neighboring channels. Finally, we 

investigate how features extracted from FBHs could be applied to train an ANN to estimate the linear and nonlinear 

noise-to-signal ratios (NSRs) over this expansive dataset.  

2.  The proposed method 

In this section, the existence of long tails in FBH is experimentally verified and is linked to NLIN. Then, simulation 

methodology based on time-varying ISI matrices is considered that matches the experimentally measured FBHs with 

excellent agreement. This verified simulation methodology is used to generate FBHs at various conditions shown in 

Table 1. Based on simulated FBHs, application of an ANN to relate the FBH to linear and nonlinear noises is 

demonstrated.  
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Fig. 1 shows the experimental setup used to verify existence of long tails in FBH. In this setup, 40 channels each 

modulated by dual-polarization 16-QAM and separated by 50 GHz are combined using a multiplexer and propagated 

through 12 spans each with 80 km of standard single mode fiber (SSMF). At the end of the link, a wavelength selective 

switch separates the channel of interest (𝜆40) and directs it to a coherent receiver. To achieve a given BER target, ASE 

noise is loaded at the receiver side. In each measurement, the coherent receiver reports 16384 consecutive symbol 

error counts, each evaluated on 1280 symbols. Each symbol error count is converted to a BER reading through a 

constant normalization factor. Thus, for the rest of this paper, symbol error count and BER are used interchangeably.  

To exemplify long-tail BER (symbol error count) histogram, the experimental setup of Fig. 1 is utilized to gather the 

FBH at various conditions. Data is gathered at long-period average BERs of 3.5 × 10−2, 3 × 10−2, and 2 × 10−2. For 

each average BER, channel launch powers are set to 0 and 4 dBm. Fig. 2 shows block diagram of the simulation 

methodology opted to generate NLIN and to assess the system performance. The generated NLIN terms related to 

SPM and XPM are added to the received signal from the channel under test (CUT) transmitter prior to the digital 

signal processing (DSP) stage. The ASE and the FWM-induced NLIN are added as AWGN processes with the 

appropriate variance [1], whereas the SPM and XPM-induced NLIN contribution (|∆𝑎𝑛⟩) is generated via the time-

varying ISI model [2]. 

|∆𝑎𝑛⟩ =  ∑ 𝑅ℎ
(𝑛)|𝑎𝑛−ℎ⟩ℎ                                                                (2) 

where |∆𝒂𝒏⟩ represents a 2 × 1 column vector whose two components are the complex data symbols transmitted over 

the x and y polarization channels of the CUT in the 𝒏𝒕𝒉 time-slot. The term 𝑹𝒉
(𝒏)

 is the 𝒉𝒕𝒉 2 × 2 ISI matrix produced 

as Gaussian random matrices with the correct second order statistics [2]. For each condition considered in simulation 

(Table. 1), the second order statistics of the NLIN are extracted from the SSFM simulation. The 35 Gbaud, probability 

shaped DP-16QAM with spectral efficiency of 3.5 and roll-off factor of 0.05 is transmitted over various number of 

WDM channels, number of spans, and launch powers. Length of each span is 80 km. The 50 GHz spaced WDM 

system was simulated as noise-free, while ASE is loaded into the receiver according to target long-term (1s – 1min)  

 

Fig. 1. Experimental setup used to collect fast BER histogram. 

MUX is multiplexer and WSS is wavelength selective switch. 

SSMF denotes standard single mode fiber. 

Fig. 2. The proposed method of assessing system BER 

performance. MF: Matched filter, A/D: Analog to digital 

converter, CUT: Channel under test 

Fig. 3.  Measured (red) vs simulated (blue) fast BER histogram for various conditions with 20×16384 BER 

samples calculated over 1280 symbols.  
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Table 1.  Simulation scenarios considered for the proposed technique 

 

 

Fig. 4.  True vs estimated (a) nonlinear NSR, (b) linear NSR. Probability density function of difference between true and 

estimated NSRs normalized to total noise for (c) nonlinear noise and (d) linear noise.  

average BER value. Table 1 summarizes the 480 conditions considered for this paper. Fig. 3 compares the FBHs from 

experimental setup of Fig. 1 and simulation block diagram shown in Fig. 2 at 3 different BER values and two launch 

powers. Excellent agreement between the measured and simulated FBHs is observed. 

3.  Results 

The statistical features extracted from FBHs, in combination with number of spans and number of WDM channels are 

used as input of an ANN, consisting of 2 hidden layers each having 5 neurons. The ANN uses scaled exponential 

linear units as non-linear function, and is trained by the 70/20/15 rule for the train/dev/test sets.  Fig. 4a and 4b, show 

the true vs estimated nonlinear and linear NSRs, respectively. Good agreement between expected and estimated values 

is observed corresponding to NSR estimation error standard deviation of approximately  1.5 × 10−3 and 10−3 for 

linear and nonlinear noises, respectively.  Fig. 4c and 4d, show the probability density function of the difference 

between true and estimated nonlinear and linear NSRs normalized to total noise. This measure of accuracy is more 

meaningful than absolute error, when one of the noise components is much smaller than the other.  Normalized 

percentage error is approximately 5% for both linear and nonlinear noises. 

4.  Conclusion  

We have shown that experimentally measured long-tail fast BER (10ns–1µs) histogram from a 1000-km 12 spans link 

could be excellently matched through simulation methodology based on time-varying ISI model for generation of 

NLIN.  This simulation methodology is applied to generate FBHs for 480 conditions shown in Table 1 and used to 

train an ANN that predicts both linear and nonlinear NSRs with less than 5 percent of normalized estimation error. 

This extensively verifies the application of FBHs to monitor and separate linear and nonlinear noises over a broad 

range of average BER, from 5 × 10−3 to the threshold BER, and link configuration.  This approach is transparent to 

modulation format, significantly simplifies feature extraction, and could be readily implemented in DSP.  
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Fiber Type  SSFM 

 
Propagation Distance [ km ]  320, 640, 960, 1280 

WDM Channels  1,3,7,11,21,41 

Average BER  3.5 × 10−2 ,  2 × 10−2, 1 × 10−2 ,  5 × 10−3  

Launch Power [ dBm ]  0,1,2,3,4 
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