M1K.3.pdf OFC 2020 © OSA 2020

Capacity sharing approaches in multi-tenant,
multi-service PONs for low-latency fronthaul
applications based on cooperative-DBA

Arsalan Ahmad'2, Frank Slyne!, Sanwal Zeb!, Abdul Wahab?, Rana Azhar Khan?,

Marco Ruffini!
CONNECT research centre, The University of Dublin, Trinity College, Ireland
National University of Sciences and Technology (NUST), Pakistan

ahmadar@tcd.ie, marco.ruffini@tcd.ie

Abstract: We propose and compare algorithms to allocate upstream PON capacity, where
multiple virtual operators generate independent frame-level allocation over shared infras-
tructure. Our fragmentation-based approach shows the ability to limit latency increase to a
few microseconds. © 2020 The Author(s)

OCIS codes: (060.2330) Fiber optics communications, (060.4256) Networks optimization.

1. Introduction

Continuous growth in Internet traffic, together with the prospect of densified 5G mobile infrastructure and the
new high-bandwidth services that it will enable, means that network operators need to continuously plan ahead
the provisioning or upgrade of their access networks. Although Passive Optical Networks (PONs) are a future-
proof and low-cost solution to deploy fibre-based access networks, large scale deployment is still hindered by the
high capital expenditures required upfront. Similarly to what has happened in the mobile communication domain,
thus fixed network operators have started designing architectural models to enable sharing network resources
across multiple virtual operators and diverse services [1]. While sharing mechanisms that operate at higher layers
have already been deployed (i.e., Virtual Unbundled Local Access (VULA) and next generation bitstream), the
type of access services that PONs are required to support for SG networks and beyond will need low latency
and strict isolation between network slices. This means that Virtual Network Operators (VNOs) will require the
ability to schedule their capacity within each transmission frame (e.g, at the microsecond scale), over a shared
infrastructure. For example, work in [2] has shown that fronthaul operations can be supported by PONs in the
upstream, if multiple bursts per frame are allowed. In a shared PON environment, VNOs will require the ability to
directly schedule upstream transmission within each frame [3].

While PON virtualisation solutions have recently appeared, for example in the Residential-CORD (R-CORD)
[4] open source platform, these typically provide resource slicing at the management level, without virtualising the
Dynamic Bandwidth Allocation (DBA) protocol. This does not allow VNOs to control the frame-level scheduling
required to support services like 5G fronthaul.

We have thus proposed the concept of Virtual DBA (vDBA) [5], recently standardised by the BroadBand Forum
(BBF) in [6], to enable different VNOs schedule their frame-level capacity, using dedicated DBA algorithms that
produce independent virtual Bandwidth Maps (BMaps) with their preferred allocation. These virtual BMaps are
then merged together by a Merging Engine that produces the final BMap that is physically transmitted to all
Optical Network Units (ONUs). These operations are summarised in Fig. 1.a. In this paper, we propose two novel
stateless algorithms for the merging engine, both based on the use of class priority, and analyze their performance
in terms of efficiency of capacity allocation and latency.

R e, (O TTT— W T — T
VDBA;

\ ,: + ‘ ‘

: i wo, [T T ‘
wemnswre | [T TTT 1< oo, [T T [TTLT NRREEN
‘ P ’ Merging

VNO, Engine
Cow]| ™ 0 ‘
. svn (L TLLoL] TR — |

~+—P4—+ +—P1—+ ~+—P3—+ —FP3+ —+—pP2—+

@) (b)

Fig. 1. Architectural design of the virtual DBA mechanism

2. The Merging Engine Architecture and Algorithms Implementation

The Merging Engine carries out the difficult task to merge multiple virtual bandwidth maps, which are sent inde-
pendently by the VNOs’ DBAs, into one final allocation, thus solving all conflicts between the virtual BMaps (i.e.,
where these are attempting to allocate capacity at the same time). The principle, which operates on the concept of
class prioritisation, is that when a collision occurs in the scheduling, the merging engine will shift the allocation
with lower priority, which will thus suffer increase in latency. If two conflicting allocations belong to the same
class, then the algorithm will shift the one that would result in lower overall delay (shown in Fig. 1.b). In this work
we consider 4 different strict priority classes (4 being the highest), where traffic from lower priority is always
shifted every time it collides with a higher priority. In addition, we assume that classes 4 and 3 operate ultra-low
latency fronthaul services using cooperative DBA, standardised in [7], where the Dynamic Bandwidth Report
upstream (DBRu) mechanism is bypassed, and the scheduler of the base station informs the DBA algorithm in
the Optical Line Terminal (OLT) directly about the required scheduling information. Since this mechanism op-
erates just in time, it is not possible for the merging engine to anticipate the virtual BMap allocation, as the data
to be transmitted would not be yet available at the OLT. Classes 1 and 2 operate instead over the normal DBRu
report/grant scheme, where packets are buffered at the ONU for some time before the BMap is received. For this
reason, allocations for classes 1 and 2 can also be anticipated within a given frame by the merging engine.

Algorithm 1: Priority Based Merging Algorithm (PBMA) Algorithm 2: Fragmentation Aware Merging Algorithm (FAMA)

1 Input: TC,(p) € (0,4),VNO;(i) € (int),R; € TC,(j) € (int); 1 Input: TC,(p) € (0,4),VNO,(i) € (int),R; € TC,(j) € (int);
2 TCp < Traffic class, R; < Requests, coll < Collision, ple < Placement; 2 TC, + Traffic class, R; + Requests, coll + Collision, merged + Output;
3 foreach T'C,, do 3 Execution;

4 p + start with highest priority; 4 while current time < frame_size(1152) do

5 foreach VNO; do 5 foreach VNO; do

6 Traverse all R; sequentially and do the following; 6 top_segment —Traverse all requests R ;;

7 Coll = Find coll(); 7 if R;.start_time < current_time then

8 if current priority == colliding request priority then 8 ‘ return R j;

9 | Select request with lower start time; 9 else
10 clse 10 | find(R; with priority < 3) return R ;
1 | Select max(current. priority, colliding _request .priority); 1 coll = check_coll(top_segments);
12 Place the selected request in the merged output; 12 if coll = True and coll > 0 then
13 foreach VNO; do 13 if len(request.start time < current_time) == 1 then
14 Traverse all unallocated R; and do the following; 14 ‘ select request
15 if R j can be anticipated or delayed then 15 else
16 | added to the merged output; 16 | Select max(Rj.priority) or min(Rj.start;ime);
17 else 17 merged.out put +— selected.request;
18 | add them in left_out _segments; 18 current _time +— current _time + request . job_size,

(a) Priority Based Merging Algorithm (PBMA) (b) Fragmentation Aware Merging Algorithm (FAMA)

Fig. 2. Pseudo-code for the two Merging Engine algorithms considered in this work

In this paper we define two merging engine algorithms and analyse their difference in performance. The
algorithms are named Priority Based Merging Algorithm (PBMA) and Fragmentation Aware Merging Algo-
rithm (FAMA) and their pseudo-codes are reported in Fig. 2.a and 2.b, respectively. In PBMA, all requests are
traversed sequentially for each traffic class, starting from the highest priority p. Conflicts are resolved by antici-
pating and/or postponing allocations on the basis of priority p and in case of similar priority, the allocation having
an earlier start time is preferred (as this reduces the overall amount of latency introduced). On the other hand,
FAMA works by considering allocations from the start of the frame till end, with all priorities examined at the
same time. FAMA works by comparing the VNO’s requests whose start time is less than the current time of the
merged output. It first compares the priority and in case of similar priority the request with lower start time is
selected. If there are no requests with start time less than the current merged output time, FAMA considers the
requests that can be anticipated (i.e., those belonging to classes 1 & 2), for each VNO.

3. Simulation results

In our simulations we consider two VNOs sharing a 10G XGS-PON upstream frame, which is divided into 1152
slots, each of 135 bytes with approximate duration of 0.11us. We generate virtual BMaps using a random uniform
distribution between a minimum grant size of 1 slot and a maximum of 50 slots (i.e., the maximum is about 5%
of the total frame size), always leaving one slot as guard interval between the requests, and in a way that balances
the requests across each frame.

Figures 3.a and 3.b compare the performance of both algorithms as a function of the offered traffic, the first
showing the percentage of traffic that was actually served (i.e., not dropped) and the second the average additional
latency introduced by the merging engine operations. In this case the traffic load is distributed uniformly across
the 4 priority classes. With PBMA, with the increase in offered traffic, the served traffic of the lowest priority type
starts to decrease noticeably. Latency tends to affect mostly the lowest priority class 1, with some repercussions
also noticeable for classes 2 and 3. The FAMA algorithm instead, by its tight packing approach achieved by

N
wn

i) 20
~ 80] =]
= 2 15
Z 60 g
= u g
B ~10
% 40 é‘ ™
b FAMA-TC1 + PBMA-TCI1 | %
20 FAMA-TC2 PBMA-TC2 1 =5 L :
FAMA-TC3 PBMA-TC3 5 8
0 EAMA-TC4 =) PBMA-TC4 LA 0 W 2 A x A
60 70 80 90 100 60 70 80 90 100
Offered Traffic [%] Offered Traffic [%]
(a) served traffic vs offered traffic (b) Latency vs offered traffic
25 T
100 & & = | o) u
A —,'? 20 o
< 80 =
g u n g =
2 n 215
E 60] 5
g E
2 40 5! 4
5 <]
%] i} =
<
20 =5 A
A T T
L B
0 0 A i i i
20 40 60 80 100 20 40 60 80 100
High Priority Traffic [%] High Priority Traffic [%]
(c) served traffic vs high priority traffic (d) Latency vs high priority traffic

Fig. 3. Simulation Results

looping over each slot of the frame one by one, is capable of reducing latency across all classes, with the most
noticeable improvement for class 1 (the latency is comparable to that of priority 3 in the PBMA algorithm). The
main advantage of PBMA is that it can achieve the lowest latency for class 4 (less than 1), because this priority
is allocated in advance of all other calculations, which however leads to lower performance for all other classes.

As PONs might be used for transporting fronthaul 5G traffic, it is also important to understand the amount of
highest priority traffic that an operator can support before violating a given latency requirement. Thus, in Fig. 3.c
and 3.d, we show the system performance when we vary the amount of highest priority traffic (up to 100% of the
total). The remaining traffic is equally distributed across the other three classes (and only shown up to the 80%
point, as at 100% only priority traffic 4 is present). The figures show again how the FAMA algorithm outperforms
the simpler PBMA approach, as it optimises frame utilisation by doing a fragment-less packing of allocations.
For the FAMA approach, the latency added to the highest priority is only about 2 s, and even the lowest class
remains below 5 ps. On the other hand, the simpler PBMA algorithm tends to drop the second-highest priority
traffic at 80% traffic level and also about 10% of the highest priority traffic at full load, with higher latency across
all classes. The trade-off is on the higher complexity of FAMA, because for each allocation in the merged output
FAMA has to choose a suitable request for each VNO that can compete for the current time slot. This trade-off
will be further evaluated in our future work.

Acknowledgements
Financial support from SFI grants 14/IA/252 (O’SHARE), 13/RC/2077 and 12/RC/2276p2 is gratefully acknowledged.
References

1. BBF standard TR-370:Fixed Access Network Sharing - Architecture and Nodal Requirements. Nov. 2017
2. S. Bidkar, et al., First Demonstration of an Ultra-Low-Latency Fronthaul Transport Over a Commercial TDM-PON
Platform. OFC 2018, p. Tu2K.3.

3. M. Ruffini, et al. Moving the Network to the Cloud: the Cloud Central Office Revolution and its Implications for the
Optical Layer. JLT 37(7), Apr. 2019.

. L. Peterson et al., Central office re-architected as a data center. IEEE Communications Magazine Oct. 2016.

. A. Elrasad et al., Frame Level Sharing for DBA virtualization in multi-tenant PONs. ONDM 2017.

. BBF Standard, TR-402: Functional Model for PON Abstraction Interface. Oct 2018.

. ITU-T standard. G.989.3-Am1. NG-PON2: Transmission convergence layer specification Amendment. Nov. 2016.

~N N LA~

