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Abstract: A non-iterative reconstruction scheme of phase-modulated signals using dispersive 
media in direct detection is described. The phase retrieval is performed by solving the temporal 
transport-of-intensity equation. Required carrier-to-signal power ratio and allowable carrier 
location in frequency are numerically studied. © 2020 The Author(s) 

 
1. Introduction 

Recently a number of research efforts have been devoted to developing phase reconstruction schemes for high-speed 
complex-modulated optical signals using direct detection (DD). Such DD optical receivers are highly desired for use 
in simple and low-complexity, but still spectrally-efficient, short and medium reach data transmission systems. One 
of promising schemes of such receivers is a self-coherent receiver incorporating the Kramers-Kronig (KK) 
processing, where the signal phase is reconstructed by the Hilbert transform of the logarithm of the signal power 
waveform under the condition that the signal spectrum has a single-sideband feature with sufficiently high carrier 
power [1]. 

Retrieval of phase information of waves from intensity has long been studied in the field of electron microscopy 
and X-ray and optical imaging [2,3]. Both iterative [4,5] and non-iterative [6] methods have been developed for 
calculating two-dimensional phase distributions or wave fronts of spatially propagating waves from intensity 
distributions before and after diffraction. These methods have already been applied in the temporal domain for 
characterizing short optical pulses in which phase across the pulse is calculated from its intensity waveforms [7-9]. 
Recently, these phase retrieval methods are being introduced to high-speed optical fiber communications for 
electrical-domain dispersion compensation and reconstruction of complex-modulated signals in DD optical receivers 
[10,11]. In [11], the iterative Fresnel-transform Gerchberg-Saxton algorithm was used in an experiment in which 
dual-polarization QPSK signals without co-transmitted carriers are reconstructed from intensity data detected before 
and after dispersive elements in the receiver. In this paper, we discuss a non-iterative method of complex signal 
reconstruction from intensity data based on solution of the temporal transport-of-intensity equation (TIE). 
Dependence of the reconstruction performance on the carrier-to-signal power ratio and frequency offset between the 
signal and the carrier is analyzed. 

2. Phase extraction based on temporal TIE 
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Fig.1. Conceptual diagram of phase extraction based on temporal TIE. 

Fig.1 shows a conceptual diagram of the phase extraction using dispersion. The received signal has a power P0(t) 
and phase φ0(t) and is given by f0(t)=P0(t)1/2exp[iφ0(t)], in which φ0(t) is lost by the direct detection in measuring 
P0(t). To retrieve the phase φ0(t), we propagate a part of the signal over a dispersive medium further in the receiver. 
The propagation of the complex signal f(t,z) in the dispersive medium can be described by ∂f/∂z+i(β2/2)∂2f/∂t2=0, 
where β2 is the group-velocity dispersion of the medium and f(t,z=0)=f0(t). The power P(t,z) and the phase φ(t,z) in 
the medium, with which f(t,z) is given by f(t,z)=P(t,z)1/2exp[iφ(t,z)], satisfy 
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which is the one-dimensional temporal TIE [7]. The right-hand side of (1) is approximated by a difference [P(t,d)-
P(t,0)]/(β2d)=[P1(t)-P0(t)]/(β2d), where P1(t) is the power profile measured after the transmission over a short 
distance d in the medium. 

In the previous study [12], we discretize and transform the left-hand side of (1) from the differential form to a 
difference form. We solve the resulting linear matrix equation of the form KΦ=b, where K is a tridiagonal 
symmetric matrix, Φ  is an unknown vector composed of φ0(t=nΔt) (n=0,1,2,...,N-1), and b is a constant vector 
corresponding to the right-hand side of (1). In the simulation in this paper, we instead solve (1) using fast Fourier 
transform, which is computationally more efficient. 

3. Numerical examples 
We perform numerical simulation of reconstruction of single-polarization Nyquist 16QAM signals using DD and 

the algorithm based on solving the TIE. For successful signal reconstruction, carrier must be added to the signal as 
in the KK scheme. The complex amplitude of the transmitted signal is written as 
    Es(t)=A0+s(t)exp(-i2πBt),       (2) 
where A0 and s(t) are the carrier and complex signal amplitudes, respectively. B represents the frequency offset 
between the carrier and the signal. In the KK scheme B is chosen to be equal to a half of the baud rate, meaning that 
the carrier is located at one edge of the signal spectrum. In our case, the carrier can be located within the signal 
spectrum. Fig.2 shows a schematic diagram of the receiver. The incoming signal is detected by two photodiodes one 
of which detects the signal after an optical dispersive element. Suitable delay either in the optical or electrical 
domain is needed in one of the branch to align in time the two detected signals. 
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Fig.2. Schematic diagram of the DD receiver. DISP: dispersive element, EQ: equalization. 

 
In the simulation 10 GBaud Nyquist 16QAM signals together with a carrier is assumed to be transmitted over a 

standard single-mode fiber (SSMF). Nonlinear effects in the transmission fiber are neglected. Gaussian noise with 
bandwidth of 12.5 GHz is added to the signal before detection. The dispersion given to the signal inside the receiver 
for phase extraction is 50 ps/nm. The electrical signal processing for the phase extraction, which is performed on 
every block of 1024 symbols, is assumed ideal in the current simulation. The dispersion of the transmission fiber is 
compensated in the electrical domain after the signal is reconstructed. Quality of the reconstructed signal is 
evaluated in terms of error vector magnitude (EVM) that is defined as the ratio of the variance of error to the 
average power in the constellation diagram. Symbol error rate (SER) is also calculated. 
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Fig.3. EVM versus CSPR for (a) TIE-based reconstruction and (b) KK-based reconstruction. Frequency offset B=6 GHz in the 

KK-based reconstruction. OSNRs does not include carrier power in the signal power. 
 
Firstly, back-to-back reconstruction performance versus the carrier power is examined. The carrier is located at 

the center of the signal spectrum, or B is equal to zero in (2). Fig.3(a) shows EVM in the unit of dB versus the 
carrier to signal power ratio (CSPR) for different optical signal to noise ratios. The OSNR (denoted as OSNRs) 
considers only the single-polarization noise and excludes the carrier power. In the case of Nyquist signals and no 
signal degradation other than noise, EVM of the signal is given by EVM=Bn/(Bref OSNRs), where Bn is the 
bandwidth of the added noise and Bref is the reference noise bandwidth for the OSNR definition. Because 
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Bn=Bref=12.5GHz in the current simulation, EVM is equal to 1/OSNRs, or EVM[dB]=-OSNRs[dB], in the absence of 
reconstruction error. This is indeed shown in Fig.3(a) when CSPR is larger than about 10dB. For smaller CSPRs, the 
power of the optical signal together with noise can be close to zero at some instance in the 1024-symbol signal block. 
When this event happens or the trajectory of the complex signal encircles the origin in the complex plane, the 
reconstruction fails. Similar behavior appears also in the signal reconstruction using the KK method as shown in 
Fig.3(b). In the reconstruction using TIE, EVMs are increased abruptly at CSPR about 7dB, which indicates that the 
requirement for the CSPR is more stringent in the TIE-based reconstruction. 
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Fig.4. SER versus OSNR for (a) TIE-based reconstruction and (b) KK-based reconstruction. B=0 and 6GHz in (a) and (b), 

respectively. OSNR in horizontal axes includes the carrier power and is related to OSNRs as OSNR=(1+CSPR) OSNRs. The 
dashed curve shows the theoretical SER for the coherent receiver. 
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Fig.5. SER versus location of the carrier frequency in the signal spectrum. 

 
Fig. 4(a) and (b) show symbol error rates after transmission of 100km SSMF for TIE and KK-based signal 

reconstruction schemes, respectively. In accordance with the behavior seen in Fig.3, the performance of the TIE-
based receiver is worse than the KK receiver by about 2dB in terms of OSNR requirements. 

An advantage of the TIE-based DD receiver over the KK receiver is that the carrier frequency can be located 
inside the signal spectrum. Fig. 5 shows SER after 100km transmission and detection using TIE and KK-based 
receivers when the frequency difference between the carrier and signal, B in (2), is varied. CSPR and OSNRs are 
10dB and 19dB, respectively. It is shown that the SER is the smallest when B=0 for the TIE-based reconstruction. 
For KK-based reconstruction, on the other hand, single-side band condition is strictly required. This indicates that 
the TIE receiver has larger flexibility in the spectral shape or the modulation format of the signal to be used. 

4. Conclusion 
Phase reconstruction from power waveforms by solving the temporal transport-of-intensity equation is described. 

Features of the reconstruction scheme are compared with the KK method. Studies of practical issues such as 
required sampling rate in the reconstruction signal processing and optimum values of the dispersion in the receiver 
are needed. 
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