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Abstract: A new deep learning training method for digital back propagation (DBP) is introduced. 
It is invariant to polarization state rotation and phase noise. Applying the method one gains more 
than 1 dB over standard DBP. 
OCIS codes: (060.0060) Fiber optics and optical communications; (060.2330) Fiber optics communications 

1. Introduction
Nonlinear impairment mitigation techniques have become an essential part in high-capacity communications links.
Although efficient algorithms have been developed over the past years, many suffer from energy-hungry processing.
The ideal nonlinear mitigation technique should be both efficient and require the least possible calculation effort.

Recently, neural networks have achieved record-breaking performance in various machine learning tasks, mainly 
due to their ability to approximate arbitrary functions [1]. This advancement in computational power has made neural 
networks an interesting candidate for non-linearity compensation (NLC). Several studies have shown that neural 
networks can mitigate fiber non-linearity impairments reasonably well at a much lower complexity than the well-
established digital backpropagation (DBP) algorithm [2, 3]. In [4], neural networks were used to approximate 
nonlinear perturbations, leading to a record-breaking spectral efficiency (SE)-distance product of 66102 b/s/Hz-km 
within an experiment. Most of these algorithms work on the very end of the receiver digital signal processing (DSP) 
chain. However, it was shown [2] that a neural network could be used as a direct replacement of DBP and be placed 
at the very beginning of the receiver DSP chain. Doing so demands a modification to the symbol level training method, 
since the symbols are not available before performing conventional DSP at the receiver end. 

In this paper, we propose a polarization state rotation and phase noise-invariant training method, which enables 
neural networks to compensate self-phase modulation (SPM) while yielding more than 1 dB gain with respect to one 
step per span DBP and reducing computational cost.  

2. Theory

2.1. Complex-valued parametric optimization via neural network
Neural networks are very well suited for a direct DBP replacement, since neural networks have a similar structure
to DBP. In neural networks, we alternate between linear and non-linear operations. The linear operation comes in
either as a matrix multiplication or a convolution while the non-linear operation comes in the form of an activation
function. The same also can be said of DBP. In DBP, we alternate between undoing the dispersion, which is a linear
operation, and fiber non-linearity. Therefore, by choosing 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 ⋅ exp�𝑗𝑗𝑗𝑗(|𝑥𝑥|2 + |𝑦𝑦|2)� as the activation
function we can represent the DBP in the neural network framework [2]. 𝑥𝑥, 𝑦𝑦 are the signal in the x- and y-
polarizations respectively and 𝑗𝑗 is the rotational strength. Due to this similarity, we can jointly optimize the
parameters, i.e., the weights of the hidden layers 𝒘𝒘 and 𝑗𝑗’s using neural network’s backpropagation algorithm. Since
the weight is complex valued, we need to use the complex valued version of the backpropagation, such as described
in [5], which leads to 𝑗𝑗 ∈ ℂ. This implies that the activation function also attenuates. The chosen activation function
is analytic with respect to 𝑗𝑗, but nonanalytic in both 𝑥𝑥 and 𝑦𝑦. To accommodate these conditions, we incorporate
Wirtinger derivatives into our training algorithm [6].

2.2. Phase and Polarization State Rotation Insensitive Parametric Optimization
We are using a neural network (NN) as a direct replacement for DBP. Consequently, the position of our NN should
as well be in the very beginning of the receiver DSP chain. Since the network is trained on the symbol level, several
static layers must be added during the training loop to ensure that the network is still trainable. These static layers
demultiplex the dual polarization signal and compensate phase rotation. The latter arises mainly due to the laser
linewidth and the frequency offset between the transmitter and receiver laser. The static layers are not trained, but
inferred from the conventional receiver DSP (or a “linear DSP scheme” performing chromatic dispersion
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compensation only, polarization rotation compensation and phase estimation), and not updated during the training 
loop. This way, the network only trains for NLC. Furthermore, this ensures that the trained NN is blind to 
polarization state rotation and phase noise. Since polarization demultiplexing is just a linear operation using a 2-by-
2 FIR filter, we incorporate it into the network by using an additional hidden layer with a linear activation function. 
We integrate the static phase rotation layer by adding another hidden layer with a linear activation function. The 
weight in this layer is fixed to a constant complex number determined by the estimated phase. 

We separate the training phase into two stages, shown in Fig. 1(a). In the 1st stage, we estimate the parameter of 
the static layer, i.e. the weight of the 2-by-2 FIR polarization demultiplexing filter and phase correction, using 
conventional receiver DSP on the training set. In the 2nd stage, we train the weights and rotational strengths of our 
networks using the complex-valued backpropagation and the previously estimated static layers. When the trained 
network infers on different, unseen datasets, we remove the static layers (in green), and compensate the polarization 
and phase noise using conventional receiver DSP. 

 
Fig. 1 (a) Training phase of our network. In the first stage, bedsides doing the whole DSP processing stages we estimate the polarization 
rotation and phase offset, and then we use those estimations as input to a static layer in the second stage. The training loop then takes the 

estimations into account during the second stage. (b) The system setup used for simulation. The neutral network (NN) investigated here, is 
at the begin of the receiver processing chain. 

3. System and Networks Setup 

To verify our training method, we first performed a numerical simulation. The transmission setup for the numerical 
experiment can be seen in Fig. 1(b). A dual polarized 32GBd 16QAM signal is encoded first. Prior to transmission, 
the symbols are up-sampled and passed through a root-raised cosine pulse-shaping filter with a roll-off factor of 0.05. 
Before launching the output of the shaping filter 𝒔𝒔[𝑘𝑘] through the fiber, we add frequency offset, phase noise and 
polarization state rotation. The up-sampled pulse 𝒔𝒔[𝑘𝑘] propagates through the fiber according to the manakov form of 
the nonlinear Schrödinger equation (NLSE) in the 𝜕𝜕𝑨𝑨(𝑡𝑡,𝑧𝑧)
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𝜶𝜶,𝜷𝜷𝟐𝟐,𝜸𝜸 are attenuation, dispersion and nonlinearity parameter 2-by-2 matrices, respectively. In this paper, the NLSE 
is solved using the split step Fourier method (SSFM)[7]. Furthermore, we did not take into account any polarization 
dependent impairment, so that 𝜶𝜶,𝜷𝜷𝟐𝟐,𝜸𝜸 are diagonal matrices. The signal 𝒅𝒅[𝑘𝑘]  is then passed through the proposed 
NN-based NLC, a matched filter and a 2-by-2 demultiplexing filter. Finally, the phase and frequency offset are 
recovered to get the approximate transmitted symbol 𝒙𝒙�𝒏𝒏. To simulate the link, we used an oversampling of 6 and a 1 
km step in the forward propagation direction of the SSFM while an oversampling of 2 is used in the receiver. The 
length of the span 𝐿𝐿𝑠𝑠𝑠𝑠 has been set to 100 km and the number of span repetitions 𝑁𝑁𝑠𝑠𝑠𝑠 is 12. Per span, we used a fiber 
that has dispersion parameters of 17.6ps/(km nm), 0.183dB/km of attenuation and 1.065W-1km-1 of nonlinearity and 
an ideal amplifier that only compensates the fiber loss which has a noise figure of 4.5dB. Lastly, we added a random 
polarization state rotation, a random frequency offset and choose 100kHz as the laser linewidth. After passing through 
the channel, the signal goes through the NLC, the polarization demultiplexer, the frequency offset estimator, the phase 
noise estimator, and lastly a LMS filter. The LMS filter is used to correct any leftover polarization state rotation. 

We fixed the number of hidden layers to 12 and varied the number of filter taps in the layers. This is equivalent to 
1 step per span DBP. We initialized the weights in the hidden layers using the impulse response of the dispersion filter 
[8] and the rotational strength as zero. We used a 21 taps 2-by-2 FIR filter for the polarization demultiplexing. The 
filter taps were trained using the constant modulus (CMA) and the radius directed equalizers (RDE) algorithms. For 



the phase correction layer, we used the 4th power algorithm to estimate the frequency offset and the blind phase search 
(BPS) to estimate the laser phase noise. During inference, we applied the same algorithms, (RDE, CMA, 4th power, 
and BPS) to estimate the polarization state rotation, frequency offset and phase noise on the unseen dataset. Finally, 
we utilized a complex number compatible ADAM optimizer [9], online training and 1 million symbols to train the 
networks. 

4. Result and Discussion 

 
Fig. 2 (a) Average of digitally estimated SNRs as a function of launch power for three different techniques, namely the neural network (NN), 

the digital backpropagation (DBP) with 1 step per span (SpS), and a linear DSP scheme (Lin). (b) Received SNR Gain using the neural 
network (NN) or DBP over a linear compensation scheme plotted as a function of complexity 

Fig. 2 (a) shows the average SNR of digitally estimated SNR in x- and y-polarization at the end of receiver DSP chain 
as a function of launch power in each fiber span. We repeat the training for each launch power and compare the results 
with a linearly compensated received SNR and a 1 step per span (SpS) DBP compensated received SNR. We show 
that an improvement of >2dB compared over the linear compensation method and a >1 dB advantage compared over 
a 1 SpS DBP is possible with the proposed training method. We quantify the improvement in inference complexity 
by plotting the number of multiplications (mul) needed to process one symbol per polarization. Based on [10], the 
number of multiplication per symbol per polarization for DBP is �4 ⋅ 𝑁𝑁taps + 9� ⋅ 𝑓𝑓𝑠𝑠
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oversampling ratio. Fig. 2(b) shows the gain with respect to the linear compensation as a function of complexity. To 
obtain a gain of more than 2 dB, our network can use a complexity below 10000 mul/sym/pol. At low complexity, 
DBP is unable to achieve the same gain, as the chosen chromatic dispersion filter cannot optimally compensate the 
dispersion and non-linearity simultaneously. Meanwhile, our proposed network can jointly optimize all weights and 
every 𝑗𝑗 in different layers, especially when the complexity is limited. By varying the 𝑁𝑁taps, we indicated that a 
variation in complexity does not affect the gain significantly. 

5. Conclusion 
We develop a brand new training method, which allows neural networks to compensate self-phase modulation (SPM) 
in the presence of polarization state rotation and phase noise. The network yields more than 1 dB gain with respect to 
one step per span DBP at a reduced computational cost. 
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