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1. Introduction

Cognitive and knowledge-based service provisioning schemes are crucial for exploiting the benefits of elastic
optical networks (EONs) while meeting the challenges of the future Internet [1]. The past few years have wit-
nessed an explosive growth of studies on the applications of machine learning (ML) in optical networks, aiming
at quality-of-transmission modeling [2], fault management [3], and resource allocation [4]. Among these studies,
the application of deep reinforcement learning (DRL) [5] for pursuing self-learning autonomic EONs is attract-
ing increasing research attention [4,6]. Specifically, DRL allows learning successful service provisioning policies
directly from online network operations while eliminating human interventions, and thus, has been regarded as
a very promising enabling technique for the next-generation intelligent EONs. In [4], we demonstrated a DRL
framework for routing, modulation and spectrum assignment (RMSA) in EONs which can beat the state-of-the-art
heuristic designs. The authors of [6] proposed a DRL approach for efficient protection design in EONs. On the
other hand, the training of DRL tasks is never trivial and can be extremely time-consuming and costly, leading
to non-negligible scalability and applicability issues. In this context, transfer learning (TL) approaches have been
investigated for DRL [7]. By exploiting the similarities between tasks and reusing existing knowledge, TL can
effectively facilitate the training of DRL. Nevertheless, the aforementioned issues remain untouched for EONs.

In this paper, we propose a knowledge transferring design to assist effective and scalable DRL in EONs. We first
present a modularized DRL agent design by taking into account shared and task-specific state spaces. With the
new agent design, we develop a multi-task learning (MTL) mechanism to enable learning and transferring better
generalized and unbiased knowledge. We perform a case study of the proposed transfer DRL design with RMSA
tasks for different topologies. Performance evaluations show remarkable benefits of the proposed approach.

2. Transfer DRL Design

Let Msrc and Mtgt denote the sets of source and target DRL-based service provisioning tasks in EONs, respectively.
Each of the tasks can be modeled as a Markov decision process Mi(Si,Λi,Ri,Pi), where Si and Λi represent its
unique state and action spaces, respectively, Ri is the reward function, and Pi is the state transition function. We
parameterize the policy for Mi (denoted as πi) by a deep neural network (DNN), namely, πi = fθi(s,a) (s ∈ Si,a ∈
Λi), where θi is the set of trainable parameters. πi indicates a probability distribution over the action space or
generates an action directly given s. Let us assume that (1) the optimal policy function fθ∗i

(s,a), which produces
the maximum long-term cumulative reward, has been learned for each Mi ∈Msrc, and (2) the source and target
tasks share certain similarities, for instance, they all involve spectrum allocation procedures. Our objective is to
expedite the training phases and to improve the performance of the learned policies for Mtgt by transferring the
knowledge acquired for Msrc, i.e., by taking advantage of θ ∗i .

Knowledge transferring is typically achieved by reusing θ ∗i for the initialization of the policy function of a target
task. Since different tasks in EONs can require different amounts of network state information, leading to different
dimensions of state representations, a straightforward copying of θ ∗i is infeasible. For instance, a DRL agent for
RMSA needs to take as input the spectrum utilization information, whereas, an agent for service function chaining
requires additionally the states of the virtual network functions (vNFs) deployed. To facilitate knowledge transfer
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Fig. 1. Principle of the proposed knowledge transferring approach: architectures of DRL agents for (a) source
task MA, (b) target task MC, and (c) multiple source tasks (tasks MA and MB).

between such tasks, we first present a modularized learning agent design. Fig. 1(a) shows the DNN architecture of
an agent (w.l.o.g., for task MA). We partition each sA ∈ SA into a task-specific state sp,A and a shared state so,A. In
particular, so,A conveys network state information shared by different tasks (e.g., spectrum utilization), while sp,A
can contain the specific request model and network state information demanded (e.g., vNF utilization). The agent
processes so,A and sp,A with separate neural network blocks (denoted as fθo,A(so,A) and fθp,A(sp,A), respectively) to
extract high-level and useful features for the task. fθo,A(so,A) adopts an architecture identical across different tasks.
Finally, two neural network blocks are deployed on the top to generate πA and the value estimation vA (i.e., the
estimated long-term reward given so,A and sp,A) combining the extracted features.

With the aforementioned modularized agent design, a most intuitive approach of transferring knowledge from
a source task MA to a target task MC is copying fθo,A(so,A) to fθo,C(so,C) while having fθp,C(sp,C) and the rest of
the neural network blocks randomly initialized (depicted by Figs. 1(a) and (b)). The derived DNN then serves as
a starting point for task MC, when a classic training process is evoked. Although so,A and so,C can have different
distributions, the best feature extractor for task MC (i.e., fθo,C(so,C)) would resemble that for task MA, and thus, the
knowledge transfer helps us more quickly approach the learning target. Note that, the feature extractor learned for
a specific source task is likely to be overfitted or biased, which can result in negative transferring effects, especially
when the source and target tasks have significantly different characteristics. To overcome this issue, we propose to
leverage MTL for learning better-generalized feature extractors. Fig. 1(c) illustrates the MTL-based agent design
in the case of two source tasks (tasks MA and MB). The DNN architecture for each of the source tasks is much the
same as that shown in Fig. 1(a), with the only difference being that a common neural network block (denoted as
fθo,AB ) is shared for processing the shared states. The multi-task agent is trained to be expert in both source tasks,
after which, fθo,AB is transferred to the target task (depicted by Figs. 1(b) and (c)). This way, we enable to learn
feature extractors that better generalize across tasks while exploiting knowledge from multiple tasks.

3. Case Study with RMSA

Learning effective RMSA policies is essential for EONs. Meanwhile, in the context of disaster recovery where the
traffic profile and topology of an EON can change dramatically, or, in the scenario of network slicing where virtual
EONs with different topologies are created dynamically [8], new RMSA policies need to be learned. Therefore,
in this work, we study knowledge transferring between RMSA tasks for different topologies. We make use of the
DeepRMSA framework presented in [4] and slightly modify it according to the agent design shown in Fig. 1(a).
Specifically, for each task Mi, sp,i contains the information of a lightpath request (i.e., source and destination
nodes, service duration) and so,i expresses the spectrum utilization state on K pre-calculated routing paths for the
request. All the neural network blocks adopt fully-connected architectures. The DeepRMSA agent selects one
from the K candidate paths at each system state and applies the first-fit spectrum allocation scheme. The agent is
granted a reward of 1 if the request is successfully provisioned (otherwise, −1). We apply the DeepRMSA-FLX
algorithm [4], which is based on the A3C framework in [5], for the training of individual tasks. We train a multi-
task agent (see Fig. 1(c)) with supervised learning by mimicking the policies learned through DRL. In particular,
we generate large amounts of training data by recording the state, policy and value tuples (i.e., {st

i,π
t
i ,v

t
i}|t ) over

a long trajectory of operation experiences from each agent of source tasks. Then, we tune all the neural network
blocks jointly, so that, for every Mi ∈Msrc, the following policy and value loss functions are minimized.
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Here, θ π and θ v are the sets of DNN parameters contributing to the policy and value outputs, respectively, and N is
the number of training data instances. Note that, we can also train a multi-task agent with DRL directly by making
it interact with the environments of multiple source tasks simultaneously. However, as the reward structures and
the intensities of reinforcement signals from different tasks can be quite different, the interferences among tasks
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Fig. 2. Evolutions of request blocking probability in training with (a) the ten-node and (b) the 11-node topolo-
gies, and (c) results of training steps to threshold (TS-Th) and blocking reduction compared with KSP-FF (γ).
w/o TL: learning without TL; TL-Mi: learning with knowledge transferred from task Mi.

can severely destabilize the training or leading to certain tasks being dominated. Finally, we apply the transfer
DRL design discussed in Section 2 for knowledge transferring between RMSA tasks.

4. Performance Evaluation

We evaluated the performance of the proposed transfer DRL design with numerical simulations incorporating two
source tasks (RMSA for the six-node and the 14-node NSFNET topologies) and three target tasks (RMSA for the
10-node, the 11-node COST 239, and the 24-node US Backbone topologies). We set the link capacity to be 100
frequency slots and assumed dynamic and uniformly distributed lightpath requests with arrivals following Poisson
processes and bandwidth requirements evenly distributed within [25,100] Gb/s. Each DRL agent (for task Mi) was
implemented with fθo,i of five hidden layers (128 neurons each layer), a policy layer of five neurons, and a value
layer of one neuron. Both the policy and value layers take as input sp,i and the outputs of fθo,i . We employed eight
and one actor-learner for the source and target tasks, respectively. The rest of the parameter setups for DRL were
similar to those presented in [4]. For the training of the multi-task agent, we generated 100,000 data instances from
every source task. For each target task, we evaluated four cases, i.e., learning (1) without knowledge transferring
(w/o TL), with knowledge transferred from (2) the six-node topology (TL-Six-Node), (3) the 14-node topology
(TL-14-Node), and (4) the MTL agent (TL-MTL). We also implemented the K-shortest path routing (K = 5) and
first-fit spectrum allocation algorithm (KSP-FF) with the state-of-the-art performance as the baseline.

Fig. 2(a) shows the evolutions of request blocking probability during training with the ten-node topology. We
can see that TL-14-Node and TL-MTL can remarkably expedite the learning process of the target task, whereas,
negative transferring is observed for TL-Six-Node, leading to performance even worse than that of learning from
scratch. We presume that the negative effect is due to that the difference between the two tasks is significant and
that the knowledge transferred is severely biased. However, it is interesting to notice that such biased knowl-
edge is still very helpful when integrated into an MTL scenario. It can be seen that TL-MTL always outperforms
TL-14-Node after the initial stage. This is because TL-MTL enables to exploit both source tasks and learn better-
generalized knowledge. Let us set the blocking probability of KSP-FF as a threshold of acceptable performance,
TL-MTL can reduce the number of training steps required to completely surpass the threshold (TS-Th) by 6.1×
when compared with learning from scratch. Fig. 2(b) presents the performance evolutions from different learning
models with the 11-node topology. The results confirm the above observations while showing a more clear ad-
vantage of TL-MTL against TL-14-Node. Finally, we summarize the results for different target tasks in Fig. 2(c).
We can see that TL-MTL can effectively reduce TS-Th for all the cases (by a factor of 4× on average), whereas,
TL-Six-Node only works with the 24-node topology. We also measured the eventual performance of each model
by counting its blocking reduction against KSP-FF after training of 50,000 steps (γ). Again, the results show that
TL-MTL performs the best amongst the models. Compared with learning from scratch, TL-MTL achieves 20.1%,
16.5%, and 16.4% extra blocking reductions, respectively, for the three target tasks.

5. Conclusion

We proposed an MTL-aided knowledge transferring approach for DRL in EONs and verified its effectiveness with
evaluations on RMSA. Our future work will investigate knowledge transferring between different applications.
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