
Demonstration of Geo-Distributed Data Processing and
Aggregation in MEC-empowered Metro Optical Networks

Jiawei Zhang1, *, Lu Cui1, Zhen Liu1, and Yuefeng Ji1
1State Key Lab of Information Photonics and Optical Communications, Beijing Univ. of Posts and Telecommunications (BUPT), Beijing, China

*zjw@bupt.edu.cn

Abstract: We experimentally demonstrate a geo-distributed data processing and aggregation
(GDPA) scheme in the MEC-empowered metro optical networks. The demonstration results show
that the proposed scheme can improve resource utilization and reduce average job completion time.
OCIS codes: (060.4250) networks; (060.4254) Networks, combinatorial network design.

1. Introduction

Recently, multi-access edge computing (MEC) is proposed to sink the computing and storage capability from the
cloud to the edge of network [1]. Data analytics service enabled by MEC is a promising application for content
providers, like Facebook, Twitter, and Netflix [2]. They gather data of end users for a variety of analytical purposes
such as finding the popular content of users or monitoring the QoS metrics. This service involves a large amount of
data generated by geographically distributed sources (e.g., agents, sensors, etc.), which requires to be processed at
local edge datacenters (EDCs), such as filtering irrelevant data from raw data, to alleviate the burden of network
bandwidth. The processed data (or intermediate data) is transmitted over metro optical networks to a target EDC for
aggregation (further processing). After aggregation, analysts query the target EDC for retrieving the final analyzed
data. The above scenario is called geo-distributed data processing and aggregation (GDPA) in the literatures [3, 4].

The GDPA follows a “Job-Task” model [4], in which a job (e.g., a data analytics request) contains multiple tasks,
and each of them conducts data processing at the local EDC. Fig. 1 illustrates the GDPA scenario. Job A has three
tasks (A1, A2 and A3) locating at geo-distributed EDCs. The local EDC of task A3 is selected as the target EDC,
thus task A1 and A2 should transmit their intermediate data to EDC3 for aggregation, then the final result of job A
will be presented to the analysts. According to the “Job-Task” model [4], job completion time (JCT) depends on the
last task arrival time at the target EDC. Because data aggregation cannot start until all the tasks are completed and
transmitted to the target EDC. However, due to the different data sizes, processing power of EDCs, and available
bandwidth of metro optical networks, tasks may arrive at target EDC at different time slots, which causes a waste of
resources and a long average JCT under multi-job scenario. Therefore, it raises a problem, which is how to allocate
processing and bandwidth resources for GDPA to reduce the average JCT and improve the resource utilization.

In this paper, we propose and experimentally demonstrate a joint computing and bandwidth allocation scheme for
the GDPA in the MEC-empowered metro optical networks. Experimental results show that the proposed scheme can
achieve significant average JCT reduction and high resource utilization.

2. Resource Allocation Schemes and System Implementation for GDPA

2.1 Description of Resource Allocation Schemes

A key challenge of GDPA is how much computing and bandwidth resources should be allocated for a task. Fig. 2
shows four resources allocation schemes for job A and its tasks in Fig. 1. Let tp denote the processing time, tc denote
the transmission time and td denote the time difference between the first and last arrived tasks at target EDC. In Fig.

Task A1

Task

...

Task

Task A2

Task A3

EDC3
(target)EDC1

EDC2

A1

A2

A3

A1

A2

A3

t1 t2

t2t4

Time

Time

Baseline

Adjust CPU only

Adjust bandwidth only
tp

td

td2

A1

A2

A3

t3 t2 Time

tp

td1

Joint adjust bandwidth
and CPUA1

A2

A3

t2t5 Time

tp'

td3

(a) (b)

Analysts

Aggregation

Job A

Task

Raw data

Intermediate
 data

Final result

Request Final result

(c)tp' (d)

Fig.1 GDPA scenario. Fig. 2: (a) Baseline; (b) adjust bandwidth only;
 (c) adjust CPU only; (d) Jointly adjust bandwidth and CPU.

M1A.7.pdf OFC 2020 © OSA 2020

2(a), the baseline allocates the maximal available computing (e.g., CPU) and bandwidth resources for the tasks. It
may cause a large td, due to the difference of maximal available resources for the tasks. For example, task A1 has to
wait a long time until task A2 arrives at EDC3. This will not only waste a large storage space of EDC3, but also
occupy more CPU and bandwidth resources when processing and transmitting task A1. To overcome this issue, Fig.
2(b-c) are to adjust bandwidth and CPU capacity for the tasks respectively to extend the transmission (tc’) and
processing (tp’) time. The two schemes not only shorten td, but also release some CPU and bandwidth resources that
could be used by other jobs. In some extend, adjusting one resource may not achieve the best optimization effort,
thus a joint computing and bandwidth adjustment (JCBA) scheme is designed to further improve the performance in
Fig. 2(d). The detail of JCBA scheme is shown in Table 1. First, we select a target EDC for each job according to
the location of the largest-size task in the job. Second, we sort the jobs in a descending order of pre-JCT Tpre. Tpre is
calculated when all the jobs are allocated to the same CPU and bandwidth resources. Note that, in this stage, we do
not actually accommodate jobs yet. Third, we accommodate job i by calculating its JCT Ti according to the baseline,
whose routing is shortest path. We suppose that Ti is the time slot of the last arrived task plus the aggregation time.
With Ti unchanged, we jointly adjust CPU and bandwidth for the tasks whose arrival time is ahead of the last arrived
task of job i, while making the completion time of task j (Ti,j) smaller than Ti. We allocate resources for task j
according to the minimal value of Ti - Ti,j. To guarantee the minimal JCT, we do not adjust the resources of the last
arrived task of a job. The states of CPU and bandwidth resources will update once a job is accommodated.

2.2 System Implementation of GDPA

The proposed schemes are demonstrated on a converged edge access network platform (CEANP), which is an
SDN/NFV enabled testbed that converges radio, optical and EDC networks [5]. There are three planes—application
plane, control plane and data plane, which are interconnected via a northbound interface (NBI) and a southbound
interface (SBI). In the data plane, each network node attaches with an OpenFlow-agent (OFA) that communicates
with the controller through an extended OpenFlow protocol (OFP). The EDC node is a docker-container based
virtual system, which is controlled and managed by Kubernetes (k8s). A container with computing and storage
capabilities is assigned for a task to perform data processing and aggregation. The local docker repository provides
ready-to-use docker images for EDCs to increase the speed of docker deployment. In the control plane, an
orchestrator, including network orchestrator (NetO) and NFV orchestrator (NFVO), is to coordinate abstracted
computing and bandwidth resources that are stored in the container resource database (CRDB) and network resource
database (NRDB) respectively. Controller consists of transport controller (TC) and VNF manager (VNFM), which
are responsible for connection setup and container deployment. Fig. 3 details the interaction between the modules.

3. Experimental Setup and Results

A 12-node experimental topology is shown in Fig. 4(a). There are three real docker-container based EDC nodes (red
circle marked) with dual-core Intel CPU working at 2.10 GHz. The EDCs are interconnected by an Ethernet-over-
DWDM metro optical network. Each fiber link has six wavelengths working at 6x10 Gbps. We setup real WSS-
based ROADMs, wavelength tunable transponder cards (WTTC), and Ethernet switches, which are commercial
devises or prototypes programmed via an extended OpenFlow protocol. Besides the real nodes, others are emulated
by OvS-agents (OpenvSwitch) through virtual machines. To emulated the data processing, we use Linux command
to generate a number of files with random sizes in [1, 10] GB, and each file conducts MD5 algorithm to emulate task
processing at local EDCs. The processing time depends on the allocated CPU resource for a container. The CPU
capacity is given in mili-cpus and can be adjusted by k8s. For data transmission, we use Socket to control the port

Orchestrator Controller
Local

Registry
K8S

Agent
OFA

ROADM
OFA

Eswitch

Policy

NetO

NRDB

NFVO

CRDB

T
C

V
N

F
M

1

2

3 4

OFP_ESWITCH_
CONFIG_MOD/REPLY

OFP_ROADM_
CONFIG_MOD/REPLY

DEPLOY_POD_
CONFIG/REPLY

1

3

2

1

2

3

Output of JCBA

Setup connections

Deploy containers

Algorithm: Joint computing and bandwidth adjustment (JCBA)

Input: job set J, task set for each job in J, CPU and network states.
Output: CPU and bandwidth allocation for J.

1. Select a target EDC for each job of J according to the location of the
largest-size task in the job.

2. Sort J in a descending order of Tpre.
3. for job i in J
4. calculate the JCT of i asTi, by allocating the maximal available

resources for all the tasks in i (baseline).
5. for task j in i, while j ≠ the last arrived task in i do:
6. get task completion time Ti,j, adjust CPU and bandwidth

 for task j to min (Ti -Ti,j) ≥ 0
7. end for
8. if there is not enough resources for job i, keep i in J for

 waiting free resources. Updates CPU and bandwidth states
9. end for

Table 1 JCBA algorithm

Fig. 3 Interaction of GDPA

rate of a TCP connection to emulate the allocated bandwidth for a task. The physical port rate of an EDC is 1 Gbps
in the experiment. Table 2 shows the testing data of transmission time and processing time under different data sizes
with different allocated bandwidth and CPU resources, which provides a reference for the demonstration.

We experiment the GDPA scenario among the real nodes, where task 1 and task 2 are locally processed in EDC1
and EDC2, and their intermediate data is transmitted to EDC3 for aggregation. Fig. 4(b) shows the Wireshark
captures of container deployment in the three real EDCs through k8s system. With the k8s, we can deploy container
with different CPU capacities. Fig. 4(c) shows the allocated bandwidth and CPU resources for task 1 and task 2 by
JCBA scheme, which are visualized through Netdata and cAdvisor (open source software) respectively. In addition,
with the help of JCBA, we can achieve a shorter time difference between task 1 (first arrived task) and task 2 (last
arrived task), which is shown in Fig. 4(d).

In addition, the four schemes in Fig. 2 are implemented in our testbed to compare their performance. Each point
in Fig. 5 is averaged over five experimental results. As shown in Fig. 5(a), we observe that the average JCT
increases with the growing number of jobs. The reason is that more jobs would compete network resources, which
causes more queuing delay. The JCBA is a straightforward but efficient algorithm that achieves the lowest average
JCT. This is because it releases the resources of earlier arrived tasks, which can be used by other jobs to reduce their
queuing delay. Fig. 5(b) shows the time difference between the first and last arrived tasks of a job. The JCBA
achieves the smallest time difference, because it jointly adjusts the CPU and bandwidth resources to extend the
arrival time of the tasks to realize the minimal td.

4. Conclusion

We proposed and experimentally demonstrated a joint computing and bandwidth allocation scheme for geo-
distributed data processing and aggregation in the MEC-empowered metro optical networks. We verified its
feasibility for improving the service performance, such as average JCT.
Acknowledgment This work was supported by the National Key R&D Program of China (No. 2018YFB1800802), the National Nature Science
Foundation of China Projects (No. 61971055), the Beijing Natural Science Foundation (No. 4192039), the fund of State Key Laboratory of
Information Photonics and Optical Communications, China, IPOC2019ZT05.

Reference
[1] T. Taleb, et al., IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.
[2] A. Vulimiri, et al., in Proc. ACM SIGMOD, pp. 1087–1092, Melbourne, Australia, 2015.
[3] Z. Hu, et al., in Proc. IEEE INFOCOM, pp. 1-9, San Francisco, USA, 2016.
[4] Z. Liu, et al., IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 7, pp. B152-B163, 2018.
[5] S. Zhang, et al., in Proc. ECOC, Dublin, Ireland, 2019.

EDC

ROADM

Eth-switch

Task1

BW: 170Mbps BW: 55Mbps

CPU : 1000
milli-cpu

CPU : 400
milli-cpus

Time difference

(d)(a) (c)

EDC1

WTTC Deploy container
for task

(b)

Aggregation
in EDC3

EDC2

EDC3

EDC3

EDC2

ROADM

EDC1

Message body

Task2

Processing

Transmission

Eth-switch

Fig. 4 (a) Experimental topology; (b) Wireshark capture of container deployment by k8s; (c) allocated bandwidth and CPU resources for

task 1 and task 2 by JCBA scheme; (d) time difference of job.

Table 2 Testing data of processing and transmission time

Data
size
(GB)

Transmission time (s) Processing time (s)

800
Mbps

400
Mbps

200
Mbps

100
Mbps

1000 mili-
cpu

750
 mili-cpu

500
mili-cpu

200
mili-cpu

11.2 22.004

258.248

45.001 88.124

34.831 67.576 129.395

57.187

80.246

106.821

1

3

5

7

9

119.942

166.589

204.458

441.043215.371

614.099312.722

802.928392.039

8.939 11.607 17.334 44.781

27.814 35.298 47.446 139.351

46.684 59.027 78.001 233.884

65.725 83.472 106.701 329.283

85.253 106.701 137.923 427.122 0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

Ti
m

e
di

ff
er

en
ce

 (s
)

Number of jobs

 JCBA

 Baseline

 Adjust BW only

 Adjust CPU only

0 5 10 15 20 25 30

200

400

600

800

1000

1200

Av
er

ag
e

JC
T

(s
)

Number of jobs

 JCBA
 Baseline
 Adjust BW only
 Adjust CPU only

Fig. 5: (a) Average JCT; (b) time difference (td).

(a) (b)

