
M1A.1.pdf OFC 2020 © OSA 2020

Telemetry-Driven Optical 5G Serverless
Architecture for Latency-Sensitive Edge Computing

István Pelle1, Francesco Paolucci2, Balázs Sonkoly1, Filippo Cugini3
(1) MTA-BME Network Softwarization Research Group, Budapest, Hungary,

(2) Scuola Superiore Sant’Anna, Pisa, Italy, (3) CNIT, Pisa, Italy
pelle@tmit.bme.hu

Abstract: Latency-sensitive serverless subfunctions are optimally deployed at edge and
cloud according to telemetry-retrieved data from the 5G transport infrastructure. Once de-
ployed, serverless functions provided extremely fast invocation time of less than 450ms.
OCIS codes: 060.0060, 060.4250. © 2019 The Author(s)

1. Introduction

Edge computing is driving the evolution of optical 5G converged fronthaul and backhaul network architecture
towards a unified computing and network infrastructure able to fulfill latency-sensitive requirements of emerging
5G services. Latency-sensitive data have to be elaborated in close proximity to where they are produced, making
inadequate the traditional approach of fully delegating all computations to remote cloud resources. However,
the availability of computing and networking resources at the edge is limited for cost reasons. Moreover, such
resources have to be shared among multiple competing and dynamic 5G applications. An example of resource-
hungry 5G applications is represented by Artificial Intelligence (AI) inferences, such as video analytics, offloaded
from end terminals but often requiring near-real time capabilities in object/event recognition.

Recent advances at the optical 5G network infrastructure level have enabled attractive features in terms of data
plane programmability and monitoring capabilities. E.g., the P4 technology has emerged as one of the most rele-
vant candidates to provide network programmability over optical 5G infrastructures. In [1], a P4-defined data path
for L2/L3 transport for sliceable optical transport is demonstrated, while [2] showcases monitoring and captur-
ing latency performance of applications by using in-band telemetry. In addition, telemetry has been exploited to
monitor network resources with higher accuracy at limited bandwidth compared to traditional approaches [3].

To effectively support latency-sensitive 5G applications accounting for limited availability of edge resources,
we propose to leverage on a comprehensive architecture exploiting (i) accurate network monitoring infrastructure
and (ii) Function as a Service (FaaS, serverless) technology, here applied at the edge. In serverless, traditional
monolithic applications are engineered as a combination of (sub)-functions to be deployed and combined/chained
in a flexible way. So far, serverless has been implemented within data centers (e.g., Amazon Web Services) or in
on-premises remote facilities, but to the best of our knowledge, it has never been experimented at the edge in a
latency-sensitive optical 5G scenario provided with detailed and comprehensive monitoring capabilities.

2. Telemetry-driven 5G network architecture for latency-sensitive serverless computing

Fig. 1 shows the reference optical 5G edge-to-DC converged fronthaul and backhaul network architecture. It exten-
sively exploits telemetry and data plane programmability to provide deep network awareness to serverless control
systems. Telemetry-based monitoring is activated from all network elements (i.e., optical and packet systems).
P4-enabled NICs are used in edge compute nodes, providing direct optical connectivity augmented with in-band
monitoring capabilities. In particular, P4 programmability is exploited to introduce ad hoc header extensions di-
rectly by the NIC, thus accounting for latency contributions (e.g., queuing time) directly from the server and
updated throughout the whole network up to the data center. The proposed architecture encompasses a serverless
control system based on three main functional modules, shown in Fig. 2. The Edge-Cloud Optimizer (ECO) is re-
sponsible for determining the placement and layout of components of an application that is given by its functions
(smallest individually deployable components, fi) and the call hierarchy among those. Based on quality of service
(QoS) indicators measured through telemetry on the 5G transport and computing infrastructure, the ECO com-
putes an optimal grouping (SFi) of the application’s functions and assigns these to either edge or cloud resources
while satisfying the application’s QoS requirements. Actual deployment is performed by the Serverless Deploy-
ment Engine (SDE) component via calls through the Provider API that has direct connection to cloud and edge
resources. After deployment, the Telemetry Service (TS) module monitors application and network performance
and reports it to the ECO.

Fig. 1 also shows the use case of serverless function instantiation deployed at the edge and in the cloud. Server-
less Function 1 (SF1) is instantiated close to the user equipment to perform low-latency operations (e.g., image
processing and inference for critical object recognition), while SF2 is deployed in the cloud performing offload-
ing operations subject to bounded latency constraints (e.g., image upload to a repository). The Telemetry Service

M1A.1.pdf OFC 2020 © OSA 2020

operates on different transport segments, spanning different layers. The Optical Telemetry (OT) module collects
Quality of Transmission (QoT) monitoring information from the optical layer leveraging disaggregated stream-
ing of Optical Signal-To-Noise Ratio (OSNR) values at the coherent receiver and power values at intermediate
nodes [3]. The Network Telemetry (NT) module collects packet statistics of target traffic in the form of in-band
telemetry mirrors, exploiting P4 switches. The Edge Telemetry module (ET) collects IT statistics, such as edge
CPU rate and memory usage. This way, all layers are monitored to detect QoS degradation. For example, in a
case where NJ2 is affected by extra traffic that introduces additional latency, or an optical connection experiences
a transmission degradation, a SF1 migration to node E2 can yield better overall application performance.

P4 INT

P4 INT

P4 INT

P4 INT

Edge EJ

Edge EK

Fronthaul
Metro/Backhaul

P4 INT

Data Center

NJ1 NJ2

NC

NK1

NK2

Edge-Cloud traffic

User-Edge traffic

Core

NT ET OT

 Edge-Cloud

Optimizer (ECO)

Serverless Deployment

Engine (SDE)

Telemetry Service

Orchestrator SF1

SF2

Deployment

Fig. 1: 5G and Edge telemetry: architecture.

S

Application structure:

A =

{
f1 + f2 + · · ·+ fN
f1 → f2; f2 → f3; . . .

R QoS requirements (latency)

Edge-Cloud Optimizer (ECO)
Telemetry

Service (TS)

Serverless Deployment Engine (SDE)

Provider API

E1 . . . EJ

SF1

. . .Cloud
resources

SF2

Layout, placement:
SF1 = f1 + f3 → EJ ; SF2 = f2 → cloud; . . .

Resources,
serverless functions

Performance metrics:
- Network latency
- Execution time
- CPU usage
- Memory usage

Fig. 2: Schematics of code deployment and monitoring.

3. Telemetry and Serverless Deployment Engine Workflow
The proposed architecture has been implemented with specific focus on two main modules: the Telemetry Service,
expanded upon previous works for comprehensive telemetry management, and the new Serverless Deployment
Engine. The TS resorts to telemetry points in the 5G transport network enabling fast detection of optical impair-
ments and queue congestion on packet nodes due to dynamic traffic conditions (e.g., a heavy load of edge SF
deployment connected to the same backhaul node). To this goal, the SDN P4 switches perform in-band telemetry
(INT). Excerpts of P4 code are shown in Fig. 3. Each P4 switch, in the ingress section, defines and applies an
extra header of type INT storing latency information computed by the P4 node itself (action add int). Moreover,
dynamic cloning of selected service traffic headers is activated to provide INT header to the TS (action do mirror).
At the egress section, the switch computes the queue time metadata and writes it into the header (action write int)
and, for mirrored traffic only, it truncates the packet to provide just the header stack (action do truncate). This is
repeated for all the traversed nodes, until the last domain node (e.g., NC) extracts INT and removes extra headers,
thus avoiding the telemetry to reach the end user and the cloud. The TS NT module collects per-packet latency
and builds statistics to be provided to the ECO.

header_type NT {

 fields {

 switch_id : 32;

 enc_tcp_dstport: 16;

 deq_timedelta : 32; } }

control ingress {

 apply(steer);

 if(valid(tcp)){

 apply(int); }

}

control egress {

 apply(send_frame);

}

action do_mirror() {

 clone_ingress_pkt_to_egress(MIRROR_ID, fields);}

action do_truncate() {

 truncate(70);}

INT Header definition P4 Control Section

action add_int(sw) {

 add_header();

 modify_field(my_int.switch_id, sw);

 modify_field(my_int.enc_tcp_dstport, tcp.dstport);}

action write_int() {

 modify_field(my_int.deq_timedelta,

 queueing_metadata.deq_timedelta);}

Fig. 3: P4 code employing telemetry system.

lp

Layout,
placement

C

User
functions

f1, f2 . . .

W

Wrapper

lr

Libraries and
resources

zipped

cf

Serverless
functions zipped

CF template

AWS S3
bucket

AWS
CloudFormation

(CF)

CF stack

SF2

Cloud Lambda
Greengrass/

edge
Lambda

SF1

Libraries and
resources

Deploy to edge

Greengrass CoreGreengrass Core

SF1
Start Deploy Execution

+

+

E
dg

e
no

de
J

Se
rv

er
le

ss
D

ep
lo

ym
en

te
ng

in
e CDE

AWS
CDE + AWS

Fig. 4: Code deployment stages.

The proposed implementation of the SDE first receives layout and placement descriptions from the ECO and
based on those, assembles groups of serverless functions complimented by wrapper code. Then, it adapts user
code to different (edge or cloud) environments, collects additional libraries and file resources (e.g., machine learn-
ing artifacts), and determines their placement and accessibility according to ECO specifications. At the compute
level, the SDE relies on the solutions offered by AWS for deploying application components. First, components
are zipped and uploaded to the cloud AWS’s object storage service (called S3). The SDE assembles an AWS
CloudFormation (CF) template that contains the placement, resource flavor and connection information of all
the required cloud resources. The template is then initialized in the cloud (relaying on AWS CloudFormation
deployment engine). At the same time, the SDE translates layout and placement specifications to specific cloud
and edge compute and database resource definitions. Serverless functions are then deployed in the cloud using
AWS Lambda technology. Subsequently, the SDE deploys serverless functions at the edge relying on the AWS
Greengrass technology. Finally, Greengrass service initializes the serverless code on the edge node.

M1A.1.pdf OFC 2020 © OSA 2020

4. Experimental Results

The proposed telemetry-driven serverless architecture has been implemented and validated in an edge-cloud net-
work testbed employing packet-over-optical metro networks including P4 switches and optical transport through
transponders and ROADMs. The testbed is shown in Fig. 5 where the edge node is a Linux server equipped with
four Intel Xeon E5-2650 v3 vCPUs, 6 GB of memory, Ubuntu 18.04, P4 NICs with optical interfaces, and a
wireless interface providing wireless connection to the rover. The considered latency-sensitive application, imple-
mented as set of serverless functions, performs remote driving of a rover based on detected objects provided by
a video camera on the rover to the edge node. Querying an image from the rover’s camera and sending control
messages to the rover is always performed at the edge device while object detection can be deployed either on the
edge or in the cloud based on latency performance. The latter would be preferable to preserve edge resources, but
it can be implemented only if limited extra latency is introduced by the network. P4 switches are implemented
over Linux server boxes equipped with 10 and 40 Gb/s optical interfaces and implementing the Behavioral Model
version 2 (BMV2) with P4 code supporting custom INT and selected mirroring of packet headers.The switches are
connected to the optical layer by means of commercial 100G optical cards and QoT telemetry is realized through
NETCONF-based subscription to gRPC streaming of OSNR values received at the card (e.g., as in [3]). The TS
and SDE modules are implemented in Python. Additional dynamic traffic is injected in the backhaul network using
a Spirent N4U generator, connected with the Edge P4 Switch through 10G optical interfaces.

Fig. 6 (left) shows the latency detected by the TS system and experienced by the traffic flowing between the
edge node and the AWS cloud due to a single backhaul node with different traffic scenarios. To measure significant
network latencies, the P4 queue transmission rate has been limited to emulate real network congestion. Results
show that without synthetic traffic generation (NO) the latency is always below 0.1ms. If the optical path is longer
or the external traffic increases, latency may reach warning conditions. For example, it remains in the 0.15–
0.3ms range when queues are not full, under the traffic threshold (UT). Further congestion may occur, e.g. in
case of failure in the optical network, leading to additional latency. Above the threshold (AT), traffic experiences
significant delays in the node queue, in the range of up to 12ms, impacting on edge-cloud QoS. As shown by
Fig. 6 (center) the object detection executes 250ms quicker on a high capacity AWS server than on our edge
device. However, AWS calls add significant latency to cloud execution (at least 250ms [4]). As the ECO is aware
of these conditions, with having an uncongested backhaul network, deploying the object detection to the cloud
might yield better results. Changing network conditions, however might force the migration of the function to the
edge node. In such a case, redeployment with the SDE takes 113s: 55s for updating resources in the cloud using
CloudFormation and another 58s for edge deployment. This is performed under warning latency conditions (e.g.,
UT). After code is loaded to the edge, the Greengrass Core starts new function instances. Fig. 6 (right) shows
a comparison between the startup time of Serverless Greengrass and Docker containers which indicates that, on
average, the former takes 1154ms for executing code on the edge compared to the latter which requires 446ms.

SF2

Network Telemetry (NT)

Telemetry
Service (TS)

Serverless Deployment Engine (SDE)
lp

Layout, placement

C

User
functions

Edge-Cloud Optimizer (ECO)
S Application structure
R QoS requirements

AWS CloudFormation (CF)

Core
P4 Switch

100G
M

ux

OT

ROADM

Edge
P4 Switch

100G
M

ux

OT

ROADM

Optical metro

Edge node E j P4
N

IC

Application

component
SF1

Edge

Telemetry (ET)

Memory CPU

Execution
time

Usage Usage

Fig. 5: Testbed setup and components of the
telemetry system.

P4 Tx Rate Threshold P4 Node Latency [µs]
[kframe/s] [Mb/s] NO UT AT

5 10 <100 200 12800
10 110 <100 300 6300
20 120 <100 120 3170
40 160 <100 150 1540

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Edge p3dn.24xlarge

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

 0

 200

 400

 600

 800

 1000

 1200

 1400

Greengrass Docker

S
ta

rt
u

p
 d

e
la

y
 [

m
s
]

Fig. 6: Performance metrics: network (left), object
detection (center) and container startup (right).

5. Conclusions
A latency-sensitive rover driving application was decomposed as serverless subfunctions optimally deployed at
either the edge or the cloud according to latency and congestion telemetry-retrieved data from the optical 5G
transport network. Deployed serverless functions also showed setup time of 446ms, much lower than traditional
Docker-based solutions experiencing more than 1s.

References
1. Y. Yan et al., “P4-enabled smart NIC: Architecture and technology enabling sliceable optical DCS,” in European

Conference on Optical Communications (ECOC), 2019, pp. 1–3.
2. F. Cugini et al., “P4 in-band telemetry (INT) for latency-aware VNF in metro networks,” in OFC, 2019, p. M3Z.6.
3. F. Paolucci, et al., “Network telemetry streaming services in SDN-based disaggregated optical networks,” IEEE

JLT, vol. 36, no. 15, pp. 3142–3149, Aug 2018.
4. I. Pelle et al., “Towards Latency Sensitive Cloud Native Applications: A Performance Study on AWS,” in 2019

IEEE 12th International Conference on Cloud Computing (CLOUD), July 2019, pp. 272–280.

