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Abstract A transformer-based model for identifying and characterizing various events in passive optical 

networks with nearly equidistant branches is proposed and experimentally validated. It achieves 98.4% 

accuracy for event identification, 1.4m localization error, and a loss estimation error of 0.5dB, 

respectively. ©2023 The Author(s) 

Introduction  

Passive Optical Networks (PONs) are emerging 

as a crucial broadband access network 

technology. With PON transmission capacity 

continuously rising, it is becoming increasingly 

important to monitor the PON fiber plant to 

ensure long-term viability and dependability [1]. 

Optical time domain reflectometry (OTDR) has 

been widely used to monitor optical fiber links. 

However, monitoring PON infrastructure with 

OTDR can be challenging because the 

backscattered signals from each branch are 

superimposed, making it difficult to differentiate 

between the signals emanating from each branch 

[2]. Event analysis becomes extremely 

challenging when branch terminations are almost 

equidistant as reflected signals from branches of 

similar length overlap and add up. Therefore, 

event recognition given noisy OTDR signals, has 

always been a bottleneck, limiting its 

performance in in-service live PON monitoring. 

False alarms can occur due to high loss of the 

optical splitters at the remote node, which causes 

a significant decrease in the power of the 

backscattered signal [1], overlap of nearly 

equidistant branches, complex environmental 

interference, among other things. Recently, 

machine learning (ML) approaches [3-4] have 

shown great promise in improving OTDR event 

diagnosis in PON systems. However, such 

approaches fail to identify the faulty branch or to 

differentiate faults that occur in PON systems 

with branches of equal or similar length. In [5], we 

proposed an ML-based model for identifying 

optical network units (ONUs) in PON system with 

nearly equidistant branches. In this paper, we go 

one step further and present a novel approach 

based on a transformer neural network using a 

self-attention mechanism [6] for identifying, 

localizing, and characterizing a wide range of 

events including connectors, splitters, 

overlapped peaks due to adjacent ONUs in the 

case of nearly equidistant branches, by 

leveraging insights from OTDR data derived from 

PON systems with similar branch lengths. The 

effectiveness of the proposed method is 

experimentally validated using OTDR data.  

Proposed Approach 

Fig. 1 illustrates our proposed approach for PON 

monitoring. A reflector is located at each branch 

close to each ONU for monitoring the integrity of 

each fiber strand. OTDR measurements are 

periodically performed. The recorded traces are 

stored either locally or at a centralized database 

(e.g., in a software defined 

networking (SDN) controller). 

Each OTDR trace is first 

normalized to scale the values 

of the returned power level 

between 0 and 1. The 

rescaled trace is then divided 

into sequences of length 50, 

each of which consists of 

rescaled power level values. 

The generated sequences are 

fed successively into the ML 

model for prediction. For each 

fed sequence, our method 

event, 𝐶1: angled physical 

contact (APC) connector, 𝐶2: 

      

    

    

    

 

                                    

         

      

    

                            

                  

                                                   

            
          

     

         

        
           

                 

                    

          

     

     

                     

                

                       

                 

                 

                

               

                    

Fig. 1: Illustration of the proposed approach for event recognition and 

characterization in PON system. 



  

reflector, 𝐶3: open PC connector, 𝐶4: splitter, 𝐶5: 

two reflections due to two reflectors, and : 𝐶6: two 

peaks due to a reflector and an open PC 

connector), its location(s), its  reflectance 

value(s), and loss. The outcomes of the ML 

model along with the information of the network 

topology and a reference trace (i.e., an OTDR 

measurement performed when the PON system 

is deployed or when the network topology is 

changed) are considered for performing fault 

monitoring. For example, to check the integrity of 

a branch, the reflectance of the reflector 

(assigned to that branch) predicted by the ML 

model is compared to its initial reflectance value 

provided by the reference trace. If the difference 

exceeds a predefined threshold, the branch is 

detected as faulty. Location information provided 

by the ML model, on the other hand, can be used 

to identify the associated optical network unit 

(ONU) or branch. The reflectance and loss of an 

event such as a connector, predicted by the ML 

model can be used to detect the faults with that 

connector such as dirty connector etc.  

 

Model Architecture  

The architecture of the proposed approach is 

shown in Fig. 2. The input of the ML model, a 

sequence of length 50 [𝑃1…𝑃50], is first fed into 

an encoder transformer, which is composed of an 

input layer, a positional encoding layer, and three 

identical encoder layers. The input layer converts 

the input sequence to a vector of dimension 

𝑑𝑚𝑜𝑑𝑒𝑙 through a fully connected network. By 

adding the input vector element-by-element to a 

positional encoding vector, sequential 

information is encoded using positional encoding 

with sine and cosine functions. The obtained 

vector is then fed into three stacked encoder 

layers, whereby each encoder layer consists of 

two sub-layers: a self-attention sub-layer and a 

fully connected feed-forward sub-layer. A 

normalization layer follows each sub-layer. The 

output of the encoder transformer (𝑑𝑚𝑜𝑑𝑒𝑙-

dimensional vector) is transferred to four task 

specific layers made of 64, 40, 40, and 40 

neurons, respectively, dedicated to solving the 

tasks of event type identification (𝑇1), event 

localization (𝑇2), reflectance estimation (𝑇3), and 

loss estimation (𝑇4), respectively. The ML model's 

total loss is calculated as the weighted sum of the 

four individual task losses. 

 
Fig. 2: Proposed ML model architecture. 

Experimental Setup  

To validate the proposed approach, the 

experimental setup shown in Fig. 3 is used to 

generate OTDR data incorporating different 

event types from a PON system. At the end of 

each branch, a reflector, or an open PC 

connector is installed for generating 𝐶2 and 𝐶3 

samples. A fixed attenuator with attenuation 

settings ranging from 1 to 16 dB is used to vary 

the height of the induced reflection due to the 

reflector or open PC connector to generate 

diverse patterns incorporating faulty branch 

cases. The length difference between the second 

and the third branche is varied from 1 to 3 m to 

generate 𝐶5 and 𝐶6 samples with overlapping 

reflected pulses. An APC connector is placed at 

different locations of the network to produce 𝐶1 

patterns. The patterns of 𝐶4 are reproduced by 

cascaded optical 

1:4 and 1:8 

splitters. The 

OTDR 

configuration 

parameters, 

namely the pulse 

width, and the 

wavelength are 

set to 10 ns, and 

1650 nm, 

respectively. The 

laser power and 

          
  

           

            

               

               

               

               

            

               

            

              

 
 

 
 

  

  

 

 
 

 
 

 
 

                     

     

    

    

  

  

 

  

  

  

  

                               
                                
             

                                                            

       

   

                    

                       

             

        

         

                                   

   

                            

                  

   
   

Fig. 3: Experimental setup for generating different event patterns in a PON. 



  

the averaging time are varied to influence the 

SNR of OTDR traces. In total, a dataset 

composed of 57,414 samples (8,202 examples 

for each investigated event type) is built, and 

divided into a training (70%), a validation (10%) 

and a test dataset (20%).   

Results and Discussion  

The performance of the ML model is assessed 

using an unseen test dataset. Fig. 4 shows that 

our model accurately classifies the different event 

types with an accuracy higher than 93%. The 

class 𝐶2 can be rarely misclassified as class 𝐶5 or 

𝐶6, especially when one of the reflections in the 

class 𝐶5 or 𝐶6 has completely disappeared. The 

class 𝐶4 can be infrequently misclassified as 

class 𝐶1 or 𝐶0 due to the similarity between the 

event patterns particularly under low SNR levels. 

𝐶6 may be misclassified as 𝐶2 if the peak caused 

by an open PC connector disappears owing to a 

failure or looks very small due to the noise. Fig. 5 

shows that our approach achieves very small 

localization prediction errors, with a root mean 

square error (RMSE) of 1.4 m, demonstrating that 

the ML model accurately pinpoints the events. 

The histogram depicted in Fig. 6 demonstrates 

the accuracy of the estimates of the reflectance 

value, achieving an RMSE of 5 dB. Fig. 6 proves 

that our model yields very small loss prediction 

errors (i.e., RMSE of 0.5 dB). We evaluate then 

the generalization capability of our model when 

tested with field data. Fig. 7 illustrates the outputs 

of our approach applied to an unseen trace 

derived from a live PON system. Our model can 

accurately identify and localize the different 

events.  

 
Fig. 4: Confusion matrix achieved by our model.  
 

 
Fig. 5: Histogram of the event position prediction errors.  

 
Fig. 6: Histograms of reflectance and loss prediction errors. 

 
Fig. 7: Outputs of ML model for an example of live trace. 
Conclusions 

We proposed and experimentally validated an 

ML-based approach for automatic event 

identification and characterization in PON 

systems with nearly equidistant branches. The 

experimental results have proven that the 

proposed model achieves good performance 

(high diagnostic accuracy of 98.4%). The 

proposed method could improve fault monitoring 

in PON networks. 

This work has been performed in the framework of the 

CELTIC-NEXT project AI-NET PROTECT (Project ID 

C2019/3-4). 
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