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Abstract This paper reviews the issues and challenge to realise high-capacity optical transport system 
with channel rate over Terabit per second. We describe both novel channel-bandwidth enhancement 
schemes for achieving an over-1-Tbps optical channel and optical signal bandwidth extension schemes 
beyond C+L band, respectively. ©2023 The Author(s) 

Introduction 
Since the global data traffic generated in future 

6G era will rapidly increase at the annual growth 
rate over 1.4 times/year, ever increasing demand 
for enhancing the high-capacity long-haul (LH) 
transport system is mandatory. In order to 
support such demand, 16-Tbps LH digital 
coherent transport system with the channel rate 
of 400 Gbps was installed into today’s NTT group 
in 2020 as shown in Fig.1 [1]. Since the required 
total system capacity in terrestrial network will 
exceed 1 Pbps by 2030, scalable optical 
transport technologies are crucially needed to 
support high capacity over 1 Pbps.  

 
It is important to extend the WDM signal 

bandwidth beyond the conventional C+L band for 
the next generation system based on single 
mode fiber (SMF). However, the existing SMF 
has a capacity limit of about 100 Tbps in future 
due to the Kerr nonlinear effect and the allowable 
input power limit from the viewpoint of laser 
safety, which is recognized as a capacity crunch. 
Various SDM optical transport schemes have 
been studied in order to deal with this problem 
fundamentally [2, 3]. 

In this paper,  we describe key channel-
bandwidth enhancement schemes for increasing 
the channel capacity scalable to the multi-Tbps 
level in future high-capacity LH wavelength 
division multiplexed (WDM) transport systems. 
Furthermore, effective combination of the novel 
ultra-wideband amplification and space division 
multiplexing (SDM) scheme are described as a 
key to extend the usable optical signal bandwidth 
scalable to several 100 THz, which is more than 
10-times wider than that in C+L band, in future as 
shown in Fig. 2. 

Enhancement of channel rate over 1 Tbps 
In the commercial market, the maximum channel 
rate of DSP-ASIC reached up to 1.2 Tbps. In 
order to achieve both the channel capacity 
exceeding 1 Tbps and a long-haul (LH) transport 
over 1000 km, it is necessary to expand the 
signal band and keep the spectral efficiency (SE) 
to some extent. For example, if the symbol rate 
can be increased to more than 200 GBd at 1.6 
Tbps in future, it is possible to achieve LH 
transmission of 1000 km or more by keeping the 
SE around 5 bits/Hz, assuming FEC coding rate 
of about 0.8 and the passband narrowing by 
ROADM (see Fig. 3) [4]. 

 
Fig. 1   Capacity Evolution and Future in NTT Group 
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Fig. 2: Future bandwidth extension by WDM and SDM  
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In our previous works, an an Indium Phosphide 
(InP) hetero bipolar transistor (HBT) amplifier IC 
has potential to enlarge the baseband 
amplification bandwidth over 200 GHz [5], 
however, the usable bandwidth of the packaged 
amplifier IC is limited by the connector bandwidth 
less than 130 GHz [5]. Therefore, it will be rather 
difficult to implement low-distortion, high-
efficiency implementation of a broadband 
baseband signal interconnection between these 
devices with connecter interfaces with the 
millimeter-wave bandwidth in future multi-Tbps 
class transceiver. 

One of the effective schemes to solve this issue 
is an integration in optical frontend module that 
incorporates an analogue multiplexing (AMUX) 
and de-multiplexing function in the optical 
transmitter/receiver front-end circuit. In the 
literature [6], the InP in-phase/quadrature-phase 
modulator chip and the 2:1 analogue multiplexing 
circuit with built-in driver IC chip are all hybrid-
integrated into one module in the digital coherent 
optical frontend circuit to mitigate the electrical-
connector bandwidth limit as shown in Fig.4. At 
the same time, the digital signal processing of 
removing the linear and nonlinear distortion 
generated in such optical transmission/reception 
circuit is also key [7-12]. Using the integrated 
AMUX optical transmitter module, we have 
successfully achieved WDM transmission with 
the channel rate over 1 Tbps for the first time [10]. 

 Moreover, the linear and nonlinear distortions in 
the transceiver tend to severely limit the 
operation speed and signal SNR in recent 
spectrally-efficient probabilistic constellation 
shaping high-order multilevel modulation. By 
enhancing the DSP compensation enhancement 

combined with optical spectral equalizer, 240-km 
inline amplified transmission with the channel 
rate over 2 Tbps was first demonstrated [11]. In 
order to further relax the bottleneck in electrical 
bandwidth limitation, direct optical spectrum 
synthesis called as spectral weaving is proposed 
for multi-Tbps channel [12]. Here the analogue 
multiplexing and de-multiplexing are conducted 
in the optical frequency domain using novel 
optical time division multiplexing based on an 
integrated modulators combined with digital 
signal pre-processing, and multi-Tbps signal 
generation can be expected by CMOS-based 
digital-to-analogue converters. 

Extension of optical amplifier bandwidth 
It is well known there is a trade-off between SE 
and transmission distance, Modulation format 
and forward error correction code are flexibly set 
to balance the SE and reach in future LH WDM 
transmission systems.  Since the SE cannot 
greatly increase in future at multi-Tbps level, 
required signal bandwidth is proportional to the 
channel rate.  For example, if the channel 
capacity is increased over Tbps-level while the 
SE is kept to around 5 bit/s/Hz, the required 
signal bandwidth of the 3.2 Tbps channel will be 
over 400 GHz. This naturally reduces the number 
of WDM channels accommodated in the C+L 
band to less than 20 as shown in Fig.5 

This results that the cost-reduction factor offered 
by WDM will reduce due to the decrease of WDM 
channels sharing the common WDM components. 
In order to achieve cost-effective LH WDM 
transmission with high-speed channels over 1 
Tbps, it is necessary to expand the optical signal 
amplification bandwidth large enough for 
accommodating sufficient number of WDM 
channels. Various broadband optical amplified 
transmission experiments have been reported so 
far as shown in Fig.6 [13-18].  
Among them, the optical parametric amplifier 
using periodically-poled Lithium Niobate (PPLN) 
can realize a uniform gain and noise figure within 
the amplification bandwidth at desired 
wavelength band, and has the advantage of low 
excess noise in the optical parametric 

 
Fig. 3: Required SE and symbol rate for over-Tbps channel. 
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Fig. 4:  Impact of device integration in optical frontend. 
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Fig. 5: Available number of WDM channels for over 1 

Tbps channel assuming the SE of 5 bps/Hz 
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amplification process [19].  
Recently, we conducted S+C+L band LH optical 
amplified WDM transmission experiment using 
the PPLN -based inline amplifiers with more than 
three times wider optical bandwidth than that of 
Erbium-doped fiber amplifier (EDFA) in the  using 
1-Tbps class channels as shown in Fig.7 [17,18]. 
The optical parametric wavelength band 
conversion (WBC) is also promising as a cost-
effective means of generating optical signals at 
the bandwidth other than the C+L band [20]. 
Recently, ultra-wideband optical signal 
generation and transmission was tested using 
low-noise, high-efficiency PPLN based WBC at S 
band [21] and U band [22]. This wideband WBC 
is expected as cost-effective realization of signal 
outside of C+L band in the future ultra-wideband 
WDM system. 

Enhancement of Channel Capacity and 
Extension of optical signal bandwidth by SDM 
SDM is very effective to both channel capacity 
enhancement and the usable optical signal 
bandwidth extension. Using a trench-assisted 4-
core-fiber transmission line produced by multi 
venders with the same specification, 118 Tbps 
inline-amplified transmission over 300 km was 
demonstrated using typical PDM-16QAM format 
[23].  A power-efficient and compact multicore 
optical inline amplifiers were also demonstrated 
by using a core-pumped multi-core EDFA inline 
repeater. Recently, several organizations start 
discussion to develop SDM fiber standard 
including weakly coupled 4-core fiber with the 
same cladding diameter as the existing SMF in 
International Telecommunication Union - 
Telecommunication  Standard Sector [24].  
By using the spatial super channel, it is also 

possible to relax the electrical bandwidth 
requirement in the future optical transceiver 
circuit by spatial multiplexing number m. 
Furthermore, it is expected to increase the 
number of WDM channel by m in the limited 
optical amplification bandwidth as compared with 
that in SMF-based system. 
In the literature [25], an 8-degree SDM ROADM 
scalable to the node throughput over 1 Pbps was 
experimentally demonstrated using both 4-core 
fiber and conventional SMF. Here, spatially-
multiplexed super channels with the total channel 
capacity of 1 Tbps (250 Gbps/core) were used to 
be tested with PDM-QPSK format and the 1 Tbps 
super channels are successfully transmitted 
through the experimental SDM ROADM with the 
WDM channel count over 100 in virtual 3-node 
system in the C-band. For the cost-effective 
realization of the spatial super-channel 
transceiver, it is necessary to develop integrated 
packaging of DSP-ASICs and optical frontend 
circuits such as co-packaged optics based on 
Silicon photonics platform. 
In mode-multiplexed SDM systems, it is possible 
to increase m over 4 by introducing the advanced 
multiple input and multiple output (MIMO) digital 
signal processing while keeping sufficient WDM 
channel number. The novel cyclic mode group 
permutation scheme was proposed for mode 
multiplexed inline-amplified system to reduce the 
accumulation of differential mode delay and 
mode dependent loss [26]. The proposed 
scheme realized more than 10-mode multiplexing 
transmissions over 1000 km [26, 27] (see Fig.8). 

Conclusion 
Key enabling technologies for realizing future 
high-capacity transport system  with channel 
rate over Tbps are described. The expansion of 
both channel bandwidth and optical signal 
bandwidth by WDM and SDM should be carefully 
considered for realising future LH transport 
systems with over 1-Pbps system capacity.  
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Fig. 8: Over 10-time channel bandwidth enhancement using 

SDM based on mode multiplexing 
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Fig. 7: More-than 2-time optical bandwidth enhancement 

using PPLN optical parametric amplification repeater 
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Fig. 6: Optical bandwidth enhancement beyond C+L band for 

over-Tbps channel based WDM systems. 
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