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Abstract We show that random mode dispersion within groups of quasi-degenerate modes in few-mode
fibers considerably affects the dependence of the cross-phase modulation variance on the systematic
differential delay between mode groups. We present a perturbative model that accounts for the two
propagation effects. c©2023 The Authors

Introduction

Space-division multiplexed (SDM) systems based
on few-mode fibers (FMFs) support the propaga-
tion of groups of quasi-degenerate modes. While
modes in the same group are completely en-
tangled due to strong linear coupling, the lin-
ear crosstalk between different groups is typically
small[1]. However, the groups interact nonlinearly
while propagating along the optical fiber[2]–[5].
The strength of such interaction depends, among
other aspects, on the differential mode group de-
lay (DMGD) between the groups and the spatial
mode dispersion (SMD) within each mode group.

Due to the complexity of SDM systems, sim-
ple perturbative models are the only practical an-
alytical approach to study these nonlinear effects.
In[6]–[10] the authors showed that the change of
channel walk-off caused by DMGD alters the four-
wave mixing (FWM) efficiency, causing nonlinear
resonances for novel frequency configurations.
The authors in[9] proposed an SDM extension of
the Gaussian noise (GN) model[11] accounting for
DMGD but neglecting SMD. In[12], the nonlinear
interference noise (NLIN) model[13] was gener-
alized to SDM, including the impact of SMD in
the cross-phase modulation (XPM) variance by
assuming large SMD values and neglecting the
effect of SMD within a channel bandwidth. Re-
cently, the ergodic GN model has been proposed
in[14] to account for arbitrary values of SMD on
the XPM variance, showing a significant impact
in strong coupling conditions. However, none
of these models investigated the joint effects of
DMGD and SMD in the regime of weak-coupling.

In this work, we fill this gap by extending the
work in[14] to the case of FMFs in the presence
of DMGD and SMD. We show that SMD plays an
important role in mitigating the XPM resonance
induced by DMGD, and we propose an approxi-
mated formula for its estimation.

Perturbative model
We consider an FMF supporting two groups of
quasi-degenerate modes labeled as a and b, with
2Na and 2Nb polarization modes, respectively.
We express the transmitted signal in group s as:

|Es(t)〉 =
∑
n

sn |Gn(t)〉 , s ∈ (a, b) (1)

where the symbol |·〉 indicates a 2Ns column
vector and

∑
n is a short-hand notation for a

triple summation over n = (n1, n2, n3). The in-
dex triplet represents a channel access such that
sn is a transmitted symbol at time lag n1, fre-
quency channel index n2, and polarization mode
n3 in group s. The vector |Gn(t)〉 , p(t −
n1T )ejΩn2

t |n3〉 is the shaping function with p the
supporting pulse, T the symbol time, Ωn2

the car-
rier frequency, and |n3〉 a standard unit vector
identifying the carrier polarization in group s.

For Na=1 and Nb=2, the linear mode coupling
along distance is sketched in Fig. 1(left), where
dashed/solid lines indicate weak/strong coupling.
Figure 1(center) depicts a pulse in each polariza-
tion at a given propagation distance. The DMGD
causes a systematic delay among the pulses in
the two groups due to different group velocities,
while the SMD yields a random delay in a group.

Within a perturbative approximation of the cou-
pled Manakov equations with multiple groups[3],
the NLIN on the transmitted symbol ai can be
modeled as the following additive noise:

ni = −j
∑
h,l,n

a∗halanXhlni︸ ︷︷ ︸
intra-group

−j
∑

k,m,n

b∗kbmanX ′kmni︸ ︷︷ ︸
inter-group

(2)

where Xhlni and X ′kmni express the intra- and
inter-group FWM combinations, respectively. The
intra-group FWM was modeled in[14] accounting
for the distance- and frequency-dependent polar-
ization mixing induced by SMD on the FWM ef-
ficiency. Here we extend the theory to the inter-
group term accounting for DMGD and SMD. Ne-

mailto:chiara.lasagni@unipr.it


 

 

CUT
Group

Group

weak coupling

strong coupling

SMD

DMGD

XPM

XPM

Fig. 1: Sketch of propagation effects in a two-group FMF. From the left to the right: intra- and inter-group linear coupling along
propagation distance; random delay induced by SMD between polarization modes within a group of quasi-degenerate modes and

deterministic DMGD between the centers of mass of the two groups; intra- and inter-group XPM on the channel under test.

glecting the inter-group linear coupling, we find
that the FWM between frequencies {ωj}4j=1 is
weighted by the following link kernel,

ηkmni =

∫ Lt

0

f(z)e−j∆βzP
(b)
k3m3

(z)Q
(a)
i3n3

(z)dz (3)

where Lt is the total link length, f(z) is the
power loss/gain at coordinate z, and ∆β is
the phase-matching coefficient between the in-
teracting frequencies ωj , including the extra
walk-off induced by the DMGD[6],[8]. The ma-
trices Q(a) =

[
Q

(a)
ij

]
and P(b) =

[
P

(b)
ij

]
are

defined as Q(a) , U†a(z, ω1)Ua(z, ω2) and
P(b) , U†b(z, ω3)Ub(z, ω4), with † the transpose-
conjugate, and Ua,b independent unitary matri-
ces accounting for frequency-dependent random
mode coupling within group (a, b).

We now concentrate on XPM. Since, under
perturbative assumptions, XPM is additive in the
number of channels[11], we focus on two fre-
quency channels. Figure 1(right) defines the XPM
on the channel under test (CUT), i.e., a polariza-
tion of a frequency channel in group a, due to
channels in groups a (XPMa) and b (XPMb).

Results
Due to the randomness of the mode coupling pro-
cess, the link kernel in (3), and thus the XPM and
its variance, are random variables. Following the
idea of the ergodic GN model[14], we focus on the
average value of the XPM variance with respect
to the random mode coupling process. Since for
Gaussian distributed symbols the XPM variance
depends on |ηkmni|2, its average involves the ex-
pectation of the product of four random matrices
in each group. We evaluated such expectation
obtaining a semi-analytical model for the average
XPMb variance, which requires numerical integra-
tion of frequency integrals over the ωj . Summing
such result to the XPMa variance given in[14], we
obtain an estimation of the average XPM variance
which we refer to as the complete model.

The analysis simplifies considerably within the
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Fig. 2: Single-span CUT XPM variance vs SMD coefficient.
Markers: SSFM for variable amount of linear group crosstalk.

Solid: complete model. Dotted: simplified model by Monte
Carlo integration. DMGD=0 ps/km.

inter-channel SMD approximation, which neglects
the frequency dependence of SMD within a chan-
nel bandwidth[12],[14]. We obtain the following ex-
pected value,

E
[
|ηkmni|2

]
= 2Nb

α′(∆ω)

α
|η0 (α′(∆ω))|2 (4)

where η0 is the single-mode link kernel in the ab-
sence of mode dispersion[11], ∆ω is the spacing
between frequency channels, α is the fiber atten-
uation, and α′ is an equivalent attenuation de-
fined as α′(∆ω) , α + ∆ω2

(
ξ2
a + ξ2

b

)
with ξ2

s ,
η2SMD,s

2
N2

s

4N2
s−1 , s ∈ (a, b), where ηSMD,s is the SMD

coefficient (typically expressed in ps/
√

km)[14],[15]

in group s. Thanks to this result, we derive the
following new expression for the average variance
of the inter-group XPM (XPMb in Fig. 1),

E
[
σ2

XPM,b

]
= 2Nb

[
σ2

1(α) +
α′

α
σ2

1 (α′(∆ω))
]

(5)

where σ2
1(α) is the single-mode XPM variance

evaluated in the absence of SMD but including the
DMGD (typically expressed in ps/km) in the chan-
nel walk-off. σ2

1 can be evaluated by numerical
quadrature, such as Monte Carlo integration[16],
or by means of approximated formulas, for in-
stance through the expressions in[14] based on
the results of[11]. Here, we refer to the average
XPM variance relying on the inter-channel SMD
approximation for both the intra- and inter-group
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Fig. 3: Single-span CUT XPM variance vs DMGD, with SMD coefficient: 0 ps/
√

km (left), 8 ps/
√

km (center), and 16 ps/
√

km
(right). Markers: SSFM results with linear crosstalk -50 dB/km. Solid lines: complete model (total XPM with its XPMa and XPMb

contributions). Dotted lines: simplified model (numerical integration). Dashed lines: simplified model’s analytical approximation.

contribution as simplified model.
To test the proposed models, we performed

split-step Fourier method (SSFM) simulations
based on a waveplate model of linear coupling
with the number of waveplates and the SSFM
steps set according to[17]. Since the XPM vari-
ance scales almost linearly with the number of
spans[11], we focused just on a single-span link
of 100 km of FMF supporting three spatial modes
in two groups, as sketched in Fig. 1, with at-
tenuation 0.2 dB/km and chromatic dispersion 17
ps/(nm·km), both mode-independent. We com-
puted the Manakov coefficients and the fiber non-
linearity coefficient as per Eqs. (61)–(62) in[3] with
effective area 125 µm2 for group a, 165 µm2 for
group b, and 250 µm2 as cross-group effective
area[4]. In each mode we transmitted two dual-
polarization frequency channels spaced by 100
GHz, modulated with sequences of 131072 com-
plex Gaussian distributed symbols at 49 Gbaud.

We started by investigating the effect of SMD
on the XPM variance in the absence of DMGD.
For the sake of simplicity, we used ηSMD,a =

ηSMD,b despite the smaller size of group a, even
though it is not necessary for the model. The
results are shown in Fig. 2, where the markers
with worst-case error bars represent the SSFM
results for 100 different random realizations of the
fiber waveplates, with inter-group crosstalk values
equal to -50 dB/km, -40 dB/km, or -30 dB/km. It
can be seen that these crosstalk levels do not af-
fect significantly the XPM variance, thus justify-
ing the model’s assumption of no linear coupling
between mode groups. As in the case of strong
mode coupling among all modes studied in[14], we
observe small random deviations and the pres-
ence of a local minimum in the XPM variance
around 8 ps/

√
km. Figure 2 shows that the pre-

diction of the complete model (solid lines) is in
excellent agreement with SSFM results and that
the numerical simplified model (dotted lines) is re-

liable for moderate values of SMD. Comparable
accuracy was observed even in extra simulations
with more spans that are not reported in this work.

We then investigated the joint impact of DMGD
and SMD on XPM. Figure 3 shows the XPM vari-
ance as a function of the DMGD for three values
of the SMD coefficient. The SSFM simulations
(markers) were performed at a linear crosstalk
level of -50 dB/km. The figure shows a peak in
the XPM variance when the DMGD (-13.6 ps/km)
counterbalances the chromatic dispersion walk-
off, thus enhancing the nonlinear interaction[4],[10].
However, SMD reduces the resonance in the
XPM variance by restoring a walk-off between po-
larization modes. In this region, simulations (tri-
angular markers) show a reduction of the XPM
variance of approximately 2 dB as the SMD coef-
ficient is increased from 0 to 16 ps/

√
km. The res-

onance in Fig. 3(left) at DMGD=0 ps/km is due to
a significant cross-polarization modulation, which
quickly vanishes for increasing SMD[14].

Figure 3 also shows the contributions of XPMa,b

to the overall XPM variance estimated with the
complete model (solid lines), confirming the rele-
vance of XPMb in the region of walk-off equaliza-
tion by DMGD, where it exceeds XPMa (unaltered
by the DMGD). Note that the analytical approxi-
mation of the simplified model (dashed lines) is
less accurate in this region, due to the inaccuracy
of the scalar formulas in[11] with a small walk-off.

Conclusions
We have shown that random mode dispersion af-
fects the dependence of the XPM variance on the
systematic mode group delay in FMF transmis-
sions. We extended the ergodic GN model[14]

to study the dependence of the XPM on mode
dispersion and mode group delay in the regime
of weak coupling between non-degenerate mode
groups, and we proposed a simplified formula that
can assist in the design of FMFs links.
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