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Abstract We demonstrate a silicon-photonics 1616 Clements-type vector-matrix multiplier, performing 

MNIST classification. The imperfection in the largest-scale photonic analog circuit was corrected using 

our proposed novel machine learning-based tuning method with a high fidelity of 0.904, significantly 

improving the experimental MNIST classification accuracy.  ©2023 The Author(s) 

Introduction 

Over the past several years, the role of photonics 

has changed rapidly because of the rise of silicon 

photonics. Now, photonics is considered not only 

for optical communication systems but for 

computing platforms, so the boundary between 

electronics and photonics needs to be clarified. 

Although the primary focus on computing has 

been achieved through CMOS processors, the 

great potential of photonics has been shown for 

computing, especially in artificial neural networks 

(ANNs) [1-4]. Photonic interferometers efficiently 

implement analog linear algebra operations, 

which is dominantly used for deep learning [5], at 

the speed of light. Therefore, photonic analog 

vector-matrix multipliers (PVMMs) can be 

significant building blocks for energy-saving and 

low-latency ANN architectures. 

To counter the exponential growth in demand 

for deep learning, scaling to a large-scale 

network is a crucial issue to be addressed [6, 7]. 

However, it is challenging to demonstrate the 

operation of large-scale photonic analog circuits, 

including PVMMs, because a more effective 

calibration method still needs to be used to 

overcome practical imperfections (fabrication 

errors and crosstalk originating from both thermal 

and electric effects). Although several on-chip 

learning algorithms are being developed to 

overcome this issue [8, 9], they are challenging 

to scale up to a more extensive network and 

require considerable time to gain convergence. 

Recently, physical implementation of three-layer 

deep neural networks including nonlinear 

activation functions has been demonstrated [10]. 

Despite this success, previously reported 

demonstrations of PVMMs based on silicon 

photonics that perform universal unitary 

transformation are limited in their circuit size (e.g., 

44 [1, 11, 12], 66 [10], and 88 [13]) and 

practical applications. We note that MNIST 

classification [14] is demonstrated in Ref. [12] 

and Ref. [13]; however, they limit the MNIST digit 

data to be inferred from “0” to “3” [12] or strongly 

rely on digital post-processing [13] due to the 

constraints of PVMM scaling. 10-digit MNIST 

classification has not been implemented using 

only a Mach-Zehnder interferometer (MZI)-based 

PVMM.  

This paper demonstrates a 1616 Clements-

type [15] PVMM operated with an efficient tuning 

method based on machine learning. MNIST 

classification is implemented using only a single 

PVMM that directly classifies the input data into 

10 optical output ports without any digital post-

processing. We obtained a significant 

improvement in the classification accuracy. 

Although our matrix processing comprises 240 

tunable phase shifters to be specifically tuned, 

the largest size of silicon photonics-based PVMM 

demonstrated to date, our presented tuning 

method could successfully suppress the 

crosstalk effect. This method opens the door to 

realizing large-scale networks, suggesting the 

possibility of relaxing the scaling limit of PVMMs. 

Design and packaging 

Figure 1 (a) shows an optical micrograph of the 

Clements-type 1616 PVMM fabricated through 

a 300-mm wafer process with a CMOS pilot line. 

Input light coupled into the circuit is first split into 

16 channels. Each channel has a dual-arm MZI 

modulator as an input unit, which encodes a 

complex value onto the optical field. Complexed 

valued input has a two times better 

representation ability than real-valued input. 

Then, the input signals propagate through a 

matrix processing unit comprising 120 MZIs (240 

phase shifters), which implement a 1616 unitary 

transformation operation. The insets show the 



 

  

unit cells of the input and matrix units. Each MZI 

comprises two directional couplers (DCs) and two 

phase shifters based on titanium nitride heaters, 

which unintentionally cause thermal crosstalk. 

We developed a packaging technique for a 

relatively large-scale PVMM, shown in Figure 

1(b). A pair of fiber arrays are attached to chip 

facets. For a proper interface with all phase 

shifters connected to electric voltage sources, we 

bonded a ceramic interposer on the chip. We put 

it in an LGA socket for electric contacts and onto 

a printed circuit board with many electric 

connectors for off-chip input modules. We put a 

temperature control system on the LGA socket 

for temperature stabilization. Note that we also 

have electric crosstalk because of the voltage 

control even with wiring resistance. Therefore, 

the crosstalk behavior could be complicated and 

challenging to model in this case.  

Task-specific tuning method 

Figure 2(a) shows the procedure of the task-

specific tuning for MNIST classification. We 

executed pre-processing, including max-pooling 

and FFT, to convert original MNIST images 

(2828) to 16-dimensional complex input vectors. 

The input vectors consisted of selected-

frequency FFT features from each image. To 

obtain the optimized network parameters for 

MNIST classification, we performed offline 

training using 10,000 MNIST images for a circuit 

model built on a digital platform. In the model, we 

assumed circuit errors for each MZI (insertion 

loss, phase delay, and splitting ratio error) [10], 

shown in Figure 2(b). Since we cannot directly 

measure most prior information on the errors in 

the actual device, the primary model starts from 

the ideal case (i.e., loss-less, phase error free, 

and equal splitting ratio). We assigned labels 

from “0” to “9” at the output port from the 4th to 

13th, respectively. The output labels were 

determined for each input image corresponding 

to the output port with the highest power among 

those ten ports. After the training, we mapped the 

optimized network parameters to the actual 

circuit where all phase shifters in the MZIs were 

previously calibrated. Then, CW laser light at 

1526 nm was input to the circuit, and 16 outputs 

were measured. On the basis of the relationship 

between the input vectors and the output vectors 

for the 10,000 MNIST images, we updated the 

model using machine learning, correcting for 

 
Fig. 1: (a) Optical microscope image of photonic analog vector-matrix multiplier (top half), consisting of input unit and 

Clements-type 1616 configuration. Insets represent unit MZI of input and matrix units, respectively. (b) Picture of whole 

packaging, including printed circuit board with multiple connectors for large-scale electric input system. Silicon die sample 

was bonded with ceramic interposer. 

 
Fig. 2: (a) Demonstration of 1616 photonic analog vector-matrix multiplier for implementing MNIST classification task. Each 

MNIST image is reshaped into input vector with 16 elements through pre-processing. Network parameters are gradually tuned 

toward optimized ones in accordance with offline training. During tuning process, circuit model is repeatedly updated on basis 

of circuit error learning using relationship between compressed input vectors and output powers from actual circuit. (b) 

Developed model for each MZI in matrix unit. Six circuit errors (two “t” and four “”) per each MZI are inferred using machine 

learning. (c) Correlation between simulated outputs from theoretical model and experimental outputs from actual sample.  



 

  

circuit errors from the ideal case. Figure 2(c) 

shows the power relation between the 

experimental outputs and the theoretical outputs 

from the updated model. The calculated fidelity 

(R-squared value) was 0.904, improved from 

−43.01 (before the update). Since the circuit 

errors inferred here absorb the crosstalk effect, 

individual crosstalk correction is not necessary. 

On the other hand, the distribution of the 

crosstalk effect depends on the implemented 

matrix. Thus, when we tune the network 

parameters for any sort of task, we select a 

relatively small epoch and learning rate to 

prevent a drastic change from the initially 

implemented matrix. Instead of approaching the 

final matrix once, we repeated the above 

procedure (circuit error learning, network 

parameter learning, and experimental MNIST 

classification) to gradually tune the network 

parameter distribution. 

MNIST classification task 

The obtained accuracy for the MNIST 

classification task was improved gradually along 

with the iterations. During the network parameter 

learning, the learning rate was set at 0.001, while 

the epoch was set at 10-20. Figure 3(a) shows 

the confusion matrix for the theoretical model 

after 11 iterations, showing a theoretical accuracy 

of 83.9%. On the basis of the network parameters 

obtained in this model, we achieved an 

experimental accuracy of 67.2%, as shown in 

Figure 3(b). The gap between theoretical and 

experimental accuracies was caused by the 

imperfection of the modeling (R2 = 0.904) and the 

residual crosstalk effect. We note that when the 

network parameters were tuned drastically once, 

the accuracy was much lower (31.3 %), as plotted 

in Figure 4, showing the advantage of our 

proposed method. Finally, we tested the 

wavelength dependence of the PVMM for MNIST 

classification, as shown in Figure 4. Each plot 

was obtained from the classification result of 

1,000 MNIST images at each wavelength. 

Although a nearly linear dependence was 

observed, a high classification accuracy (> 60%) 

was maintained within ±5 nm away from the 

calibrated wavelength. This means that parallel 

processing using several wavelengths would be 

feasible, which would enable throughputs to be 

improved. 

Conclusion 

We experimentally demonstrated a 1616 

Clements-type PVMM and achieved the first 

experimental MNIST classification that defines 

the classification results directly corresponding to 

the optical output ports. The obtained accuracy of 

67.2% is mainly limited by the compression of 

input images. Our proposed machine learning 

tuning method enables quick and accurate 

deployment of photonic neural network 

parameters into imperfect circuits, realizing the 

implementation of a large-scale PVMM. 

Moreover, we confirmed a low wavelength 

dependence for MNIST classification for multiple 

wavelengths. These results provide one avenue 

for both large-scale and parallel processing. 
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Fig. 3: MNIST classification task for 10,000 MNIST images. (a) Confusion matrix for theoretical model, with accuracy of 83.9%. 

(b) Confusion matrix for experiment implementation, with accuracy of 67.2%. 

 
Fig. 4: Wavelength dependence of accuracy for MNIST 

classification task. Each accuracy (blue plot) was obtained 

from results of 1,000 images at shifted wavelength from 

calibration wavelength of 1526 nm. As reference, 

accuracy obtained when network parameters were tuned 

once is shown (red plot). 
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