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Abstract Photonic computing has the potential to surpass the speed of electronic computing. Here we 

demonstrate the first all-optical iterative photonic integrated processor for matrix inversions and 

multiplications. A 4×4 matrix is inverted with 93% accuracy and a speed of 8.5×105 inversions per 

second. ©2023 The Author(s) 

Introduction 

Modelling systems using linear equations is one 

of the most frequently used methods in science 

and engineering. Numerically solving such 

problems usually involves computationally 

expensive matrix calculations including matrix 

inversions and multiplications [1,2]. Limitations in 

speed and power consumption of the digital 

electronic computing platforms have caused 

researchers to seek new pathways to accelerate 

such tasks. Photonic computing systems that 

enable in-propagation computing have recently 

gained increasing interest owing to the rapid 

development of photonic integration platforms. In 

the past decades, efforts have been made in free-

space [3], all-fibre-based [4], and integrated 

waveguide [5] systems. Free-space optical 

systems allow a relatively high matrix size but are 

generally bulky. All-fibre optical networks have 

the problem of phase fluctuation arising from 

environmental effects, thus prohibiting the use of 

a coherent source/receiver and the extension to 

complex-valued computations. In contrast, 

photonic integration platforms offer compact size, 

enabling ultra-fast computations, and simple 

phase and polarization control. This enables full 

utilization of high parallelism of optical signal 

processing, and good reconfigurability for 

implementing different computations using a 

single chip.  

Since the 2010s, numerous demonstrations of 

on-chip matrix-vector multipliers have been 

reported [5–8]. However, few explorations of 

optical matrix inversions have been made, 

despite the fact that matrix inversion is more 

computationally taxing than matrix multiplication 

and is widely used in numerically solving 

equations [1], communication system 

applications [9], control systems [10] and 

cryptography [11]. Since iterative methods are 

usually used for optical matrix inversion systems 

[12], the computing speed can be significantly 

improved if all-optical loop-back is applied to 

avoid optical/electrical/optical (OEO) conversions 

between iterations. 

In this paper, we present the first photonic 

integrated circuit that is capable of performing 

direct computations for both matrix inversions 

and multiplications. We implement 4×4 matrix 

inversions on a silicon nitride (SiN) photonic chip, 

with an accuracy of 93% and a speed of 8.5×105 

inversions per second. In addition, the chip is also 

used for 4×4 matrix multiplications with 90% 

accuracy. Our results pave a promising way 

towards ultra-fast photonic integrated generic 

matrix processors. 

Principles and chip design 

We have proposed an iterative Richardson 

 

Fig. 1:. Micrographs of (a) the 4×4 SiN integrated chip. (b) A 

Mach-Zehnder Interferometer (MZI) unit equipped with two 

thermo-optic phase shifters (TOPSs). (c) a Combiner block. 

(d) a Fan-in block consisting of cascaded multi-mode 

interferometers (MMIs). (d) a Fan-out block consisting of 

MMIs. (f) a Splitter block. (g) Edge couplers with the inverse 

taper structure.  



  

processor for matrix inversion as described by 

Eq. (1) [12]: 

 𝑿(𝑘+1) = (𝑰𝑁 −𝜔𝑨)𝑿(𝑘) +𝜔𝑰𝑵 (1) 

where A is the N×N matrix to be inverted, 𝑰𝑁 is 

the N×N identity matrix, ω is a parameter used to 

adjust the convergence of the inversion 

algorithm, 𝑿(𝑘+1) and 𝑿(𝑘) (k=0,1,2,…) are output 

matrices after k+1 and k iterations, and 𝜔𝑰𝑵  is 

both the initial input matrix (𝑿(0)) that initiates the 

computation and the additional term which needs 

to be added in each iteration. 

Fig. 1a shows a micrograph of the 4×4 

photonic integrated chip for computing matrix 

inversions and multiplications, which has a 

footprint of 2.8×6.6 mm2. Fig. 1b-g shows 

enlarged views of the components integrated on-

chip, including Mach-Zehnder interferometers 

(MZIs) equipped with two thermo-optic phase 

shifters (TOPSs), the signal fan-in blocks 

comprising cascaded multi-mode interferometers 

(MMIs), the combiner blocks comprising single-

stage 2×1 MMI couplers, the signal fan-out 

blocks consisting of cascaded MMIs, the splitter 

block consisting of single-stage 1×2 MMI coupler 

and edge couplers with the inverse taper 

structure. 

To prepare for the inversion, the weight matrix 

𝑰𝑁 − 𝜔𝑨  is pre-loaded onto the on-chip weight 

bank comprising 16 MZIs. Specifically, the 

transmissions of MZIs are changed by applying 

voltages to the TOPSs according to pre-

calibrated lookup tables. Then the input light 

signal representing one column of 𝜔𝑰𝑵  is 

launched into the chip via the edge couplers to 

initiate the inversion. The signal is split into 4 

copies in the fan-out blocks (blue dashed boxes) 

and sent to the weight bank. After passing the 

weight bank and being combined at the fan-in 

blocks (red dashed boxes), a matrix-vector 

multiplication (MVM) operation is achieved, 

corresponding to the multiplication of (𝑰𝑁 − 𝜔𝑨) 

and one column of 𝑿(𝑘) . The MVM results are 

split in the 1×2 splitter blocks (green dashed 

boxes), one of which is sent to off-chip 

components via edge couplers for amplification, 

filtering and detection, and the others are used 

for monitoring purposes. After compensating for 

propagation, combining, splitting, and coupling 

losses, the signals are sent back to the chip and 

combined with the initial one column of 𝜔𝑰𝑵 in the 

combiner blocks (orange dashed boxes). This 

process is repeated several times until the 

outputs converge. 

Experimental setup 

Fig. 2a shows the schematic of the experimental 

setup. A 1550 nm continuous-wave laser (CW) 

source is used as the input signal. A modulator 

(Mod) is used to turn the input signal into short 

pulses so that the computation results in each 

iteration can be recorded in the 4-channel 

oscilloscope (4-ch OSC). Upon entering the chip, 

the signal goes through a combiner block, a fan-

out block, the weight bank, a fan-in block, and a 

splitter block in turn. The 4 signals representing 

the MVM results are coupled out of the chip. 4 

erbium-doped fibre amplifiers (EDFAs) are used 

to compensate for on-chip losses and fibre-to-

chip coupling losses in each path. 4 Bandpass 

filters (BPFs, 0.1 nm bandwidth) are then used to 

suppress amplified spontaneous emission (ASE) 

noise from the amplification process. The filtered 

signals are split into two parts in the 1×2 splitters. 

One part is photoconverted by photodetectors 

(PDs) into currents and amplified by 

transimpedance amplifiers (TIAs) into voltages, 

which are captured by the 4-ch OSC. The other 

part is sent back to the chip’s first fan-in block to 

form loop operations. Polarisation controllers 

(PCs) are used to align the polarisations of the 

light signal to the chip. 

Fig. 2b displays the packaged chip, with the 

SiN chip highlighted in the white dashed box. 

Bonding wires are used to provide electrical 

control to the TOPSs from the customised printed 

circuit board (PCB). An ultra-high numerical 

aperture fibre array (UHNA FA) is used for 

coupling light signals into and out of the chip. 

Fig. 2c presents an example transmission 

curve of an MZI unit. Red dots show the 

measured transmission and the blue line shows 

the fitted curve. The transmission-voltage (T-V) 

relationship is depicted in Eq. (2): 

𝑇 = 0.51 cos(0.02𝑉2 + 0.42) + 0.53 (2) 

 

Fig. 2:. (a) Experimental setup of the all-optical iterative 

matrix inverter. (b) Packaged chip. (c) Calibrated exemplary 

MZI transmission curve  



  

Results 

We implement 4×4 matrix inversion and 

multiplication using the photonic integrated chip. 

Fig. 3a-3b exhibit the 4×4 matrix inversion and 

multiplication results respectively.  

In Fig. 3a, the inversion accuracy in terms of 
norm is: (1 − ‖𝑨𝒎𝒆𝒂𝒔

−𝟏 − 𝑨𝒊𝒅𝒆𝒂𝒍
−𝟏 ‖ ‖𝑨𝒊𝒅𝒆𝒂𝒍

−𝟏 ‖⁄ ) × 100% = 93% . 

In this experiment, the time for signals to 

propagate one circulation is around 130 ns. The 

computation converges after 9 iterations, 

corresponding to an inversion rate of 8.5×105 

inversions per second. 

In Fig. 3b, the multiplication accuracy in terms 

of norm is: (1 − ‖𝒀𝒎𝒆𝒂𝒔 − 𝒀𝒊𝒅𝒆𝒂𝒍‖ ‖𝒀𝒊𝒅𝒆𝒂𝒍‖⁄ ) × 100% = 90%. 

Conclusions 

We demonstrate the first all-optical iterative 

photonic integrated processor for matrix 

inversions and multiplications. We implement 

4×4 matrix inversions on a silicon nitride (SiN) 

photonic chip, with an accuracy of 93%, and a 

speed of 8.5×105 inversions per second, which is 

approximately an order of magnitude faster than 

traditional electronic computers (A desktop 

computer with a 2.9GHz Intel i7 core calculates 

4x4 matrix inversions at a speed of 9.2×104 

inversions per second). In addition, the chip is 

also used for 4×4 matrix multiplications with an 

accuracy of 90%. We show a pathway towards 

generic photonic matrix processors. 
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Fig. 3:. (a) Inversion results of a randomly generated 4×4 

matrix. (b) Multiplication results of two randomly generated 

4×4 matrices.  


