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Abstract We demonstrate the first all-digital real-time 65536-level PAM/QNSC transmission based on 
a typical 4×4 bidirectional CWDM system. The FPGA-based transceivers with CDR function utilize 
SFP28 optical modules for fiber transmission to achieve protocol-transparent and plug-and-play 
functionality in existing access network. ©2023 The Author(s) 

Introduction 
The importance of communication security has 
been increasingly emphasized in recent years, as 
data breaches and cyber-attacks become more 
prevalent [1]. Quantum Noise Stream Cipher 
(QNSC) has gained attention due to its superior 
compatibility with current network framework [2-
4]. By mapping the plaintext with low-order 
modulation format to an ultra-high order 
ciphertext under the control of key stream, the 
security comes from masking adjacent ciphertext 
symbols by inevitable quantum noise. Recently, 
10-70 Gbit/s real-time quadrature amplitude 
modulation (QAM)/QNSC transmission with Field 
Programmable Gate Arrays (FPGA)-based 
transmitter and receiver is reported [5-7], 
showing its potential in achieving high-speed and 
long-distance communication. However, clock 
data recovery (CDR) for ultra-high order 
encrypted signals is a vital problem faced by real-
time systems. Existing schemes use an 
additional link to transmit tone clock signal for 
optical phase-locked loop (OPLL) [5-7], which 
restricts the practical feasibility. Moreover, the 
encryption order highly relies on the resolution of 
the digital-to-analog converter (DAC). It leads to 
a limited encryption order, which remains 28 in the 
state-of-art real-time work [6].  

In previous work, we proposed DAC/ADC-free 

and CDR-based QNSC secure system boosted 
by delta-sigma modulation (DSM). The plaintext 
capacity up to 4.62 Gbps is demonstrated offline 
with asynchronous clock [8]. It greatly eases the 
requirement for high-resolution DAC and clock 
synchronization. In this paper, we report the first 
all-digital real-time 65536-level pulse-amplitude 
modulation (PAM)/QNSC transmission with CDR 
algorithm. DSM enables delivery and reception of 
PAM/QNSC signal through off-the-shelf optical 
modules (OM) without any analog devices. This 
protocol-transparent and plug-and-play 
transceiver can be seamlessly connected to the 
existing network using 10G Small Form-Factor 
Pluggable (SFP) and 25.78125G SFP28 OMs 
without any adjustment. The experiment supports 
bidirectional transmission for 8 users based on 
CWDM (coarse wavelength division multiplexing) 
grid to achieve 8×10 Gb/s plaintext capacity. This 
encryption order of 214 is the highest real-time 
QNSC result yet reported. 

Configuration of FPGA-based real-time 
transceiver for PAM/QNSC transmission 

The FPGA-based real-time transceiver for 
PAM/QNSC transmission is implemented on the 
Xilinx Virtex UltraScale+ VU9P platform as 
shown in Fig. 1. 10-Gbps plaintext is shown in 
inset(i). The encryption part converts the plaintext 
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Fig. 1: Configuration of FPGA-based PAM/QNSC real-time transceiver.  



  

into 25.78125-Gbps ciphertext frame (inset (ii)). 
The rate change here is due to upsampling 
before DSM. Commercial SFP28 OMs, which are 
widely deployed in existing fronthaul system [9, 
10], are used for transmission. The decryption 
part completes the reverse process (inset (iii)). 

Fig. 1(a) shows a block diagram of the real-
time transmitter. After receiving the binary 
plaintext signal (inset (i)), FPGA maps it to PAM4. 
Then, the 2-bit sequences are encrypted by 
modulating their amplitudes with 14-bit basis 
states generated by 263-1 pseudorandom binary 
sequence (PRBS) generators, representing an 
encryption order of 214.  As a result, 65536-level 
encrypted signal is generated. The ultra-high 
order puts high requirements on DACs, leading 
to high cost and limited ciphertext order. Here, we 
introduce DSM to convert it into 2-level 
sequences [11] and replace the amplified 
spontaneous emission (ASE) noise in the 
traditional scheme with the quantization noise to 
mask adjacent ciphertext symbols. To obtain 
better noise-shaping effect, the PAM/QNSC 
signal is upsampled by 5 times, and a root raised 
cosine (RRC) Nyquist filter is adopted. To ensure 
the randomness and security of the key stream 
and quantization noise, the seed key located in 
the header of the frame and DSM parameters are 
periodically changed at a cycle of 65μs and 1.72s, 
respectively. The channels of encryption circuit 
and DSM are 32 and 160 respectively, with the 
clock of 156.25MHz. Finally, SFP28 OM working 
at 25.78125Gb/s delivers the framed signal (inset 
(ii)). 

Block diagram of the real-time QNSC receiver 
is shown in Fig. 1(b). The DSM-PAM/QNSC 

signals are acquired by SFP28 OMs. In addition, 
since the transceiver receives low-order digital 
signals (two-level), the clock signal can be easily 
extracted through CDR. It eliminates additional 
clock lines or tone clock signals, which greatly 
simplifies the system. After RRC, PAM/QNSC 
signal was decrypted into the original PAM4 data 
by referring to the extracted seed key parameter. 
Then, 10-Gbps binary sequence is recovered by 
the demapper (inset (iii)). Thus, the entire 
encryption and decryption process is completed 
without any analog devices. 

Fig. 2 depicts the experimental setup for a 
real-time dual-fiber bidirectional CWDM system 
assembled PAM/QNSC transceivers. This typical 
bidirectional system for fronthaul consists of eight 
CWDM SFP28 OMs with four different 
wavelengths defined in ITU-T G.694.2 [12], 
multiplexers (MUX), demultiplexers (DMUX) and 
two optical fiber cables [13]. The optical spectrum 
is shown in Fig. 2(i). FPGA-based PAM/QNSC 
transceivers are connected to a 10G bit error rate 
tester (BERT). CWDM SFP28 OMs are used to 
transmit and receive ciphertext. MUX and DMUX 
enables each fiber to achieve a one-way 4-
channel 25 Gbit/s channel capacity. The length of 
the fiber is 15 km, which is a typical distance for 
fronthaul applications [14]. Furthermore, the chip 
planner of the main real-time DSPs (digital signal 
processing) in FPGA is shown in Fig. 2(c), which 
can be used to refer to resource consumption. 

Results 
Histogram of the PAM/QNSC signal without 

and with decryption is shown in Fig. 3 (a) and (b), 
respectively. The plaintext (PAM4) is completely 
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Fig. 2: (a, b) Experimental setup for real-time 4×4 bidirectional CWDM PAM/QNSC system. (c) Chip planner of FPGA. 



  

hidden in a histogram of 65536-level, which is 
concealed by the quantization noise from DSM. 
After decryption with the secret keys, original 
data are recovered as clear PAM4 data as shown 
in Fig. 3(b). The key seed pattern for encryption 
are periodically changed at a cycle of 65μs, which 
greatly enhances system security.  

One of the core ideas is to replace quantum 
noise with quantization noise. Figure 3(c) shows 
the distribution of the quantization noise within 
the signal band. To compare with Gaussian white 
noise, standard fitting curves (red line) of the 
histogram are provided. We can see that the 
histogram is basically consistent with the fitting 
curve, indicating that the quantization noise can 
be considered as white noise with standard 
normal distribution. The order and parameters of 
DSM are the main factors that affect the power 
and distribution of noise [15]. We also add some 
random factors to the DSM architecture to 
increase the randomness of the masking noise 
for better security performance. One set of 
parameters includes 6 variables, and the 
fluctuation cycle is set to 1.72s.  

A real-time test result of PAM/QNSC 
encryption and decryption is shown in Fig. 3(d). 
Instant and average BER value can be read 
directly from 10G BERT as shown in Fig. 3(e). 
After one hour of continuous experiments, results 
are recorded every five minutes. In the 
bidirectional CWDM communication system, 10G 
binary plaintext can be decrypted continuously 
and stably, with an average BER of 9.57e-4, 
which can be further corrected by forward error 
correction (FEC).  

In this study, the BER of the illegitimate 
receiver is measured through offline comparison 

in the Integrated Logic Analyzer (ILA). Due to the 
limitation of BERT, which cannot measure BER 
beyond 1e-3, the BER value of the illegitimate 
receiver cannot be directly obtained. Calculated 
offline, BER of the illegitimate receiver is 
approximately 0.5, which shows that the security 
is guaranteed. It is worth noting that the 
transmission distance is limited by OMs, which 
are designed for short-distance applications. 

Conclusions 
In this paper, we demonstrated an all-digital 

FPGA-based real-time QNSC transmission for a 
typical bidirectional CWDM system supporting 8 
users. By applying DSM, transmitting the 2-level 
optical signal over the fiber link allows the entire 
encryption and decryption process to be 
implemented without any analog components. 
Moreover, the receiver utilizes a simple CDR 
algorithm without an extra link for clock signal. 
Continuous data processing and BERT 
monitoring prove that the proposed optical 
module-based QNSC scheme is compatible with 
existing short reach and multi-user access 
networks such as wireless fronthaul and optical 
access network. This physical layer secure 
system can truly achieve protocol-transparent 
and plug-and-play functionality. Meanwhile, the 
dynamic changes of key seed patterns and DSM 
parameters enhance the practicability and 
security of this scheme. 
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