

Design and Implementation of the QKD Control and
Management Layers for Access Network Deployments

E. Kosmatos(1), A. Stavdas(1), A. Lord(2)

(1) OpenLightComm Ltd., The Ross Building, Adastral Park, Ipswich, IP5 3RE, UK
(2) Applied Research, BT, Polaris House, Adastral Park, Ipswich, IP5 3RE, United Kingdom

Abstract The integration of QKD technology for 6G deployments facilitates advanced protection against

attacks on critical infrastructures. We detail, implement and demonstrate the Key Management and

Control Layer operations of a Free Space Optics-based QKD link for network access including key

delivery with QoS guarantees.

Introduction

Quantum technologies have the potential to

instigate advanced security in 6G network

infrastructures. Quantum Key Distribution (QKD)

provides this security inherently as the keys

cannot be accessed without tampering [1].

Among the candidate QKD technologies, Free-

Space Optics (FSO) [2] may deliver high-grade

security in a cost-effective way due to the high

throughput and high-beam directivity.

Amongst the cryptographic services based on

FSO-QKD, the UK-funded AirQKD project [3] is

considering the secure handover between 6G

Base Stations (BSs) for critical services like

Vehicle-to-Infrastructure (V2I). For the V2I use-

case, 6G X-Haul data is carried securely over

FSO-QKD transceivers with an optical reach of

150-200m, placed on building rooftops to

exchange secret keys within Line-of-Sight (see

Fig.1).

A 6G V2I application that is hosted in ‘servers’

requires a cryptographic service to encrypt a

"message" via a classic protocol, e.g., Advanced

Encryption Standard (AES) and thus it requests a

quantum key to implement this encryption. A

quantum key is generated via the FSO link by

means of the BB84 QKD protocol. These keys

are used to secure the classic encryption and,

hence, the messages are exchanged between

the two terminal points securely.

Overview of the FSO-QKD Architecture

Following various standards recommendations

[4][8], the AirQKD end-to-end cryptographic

service is made possible by means of

coordinated actions between four layers; namely,

i) the Quantum Layer; ii) the Key Management

Layer (KML); iii) the QKD Control Layer; and iv)

the Service Layer as shown in Fig.2.

In particular, the KML stores and manages the

QKD keys as well as the synchronisation and

reformatting of the bit strings. The Key

Management Module (KMM) together with the

QKD module and QKD driver reside in the same

Trusted Node (TN). The KMM exposes interfaces

to various cryptographic applications that aim to

create a secure data link by means of QKD

symmetric keys. The KMM receives key requests

from Secure Application Entities (SAEs), and it

allocates the appropriate number of keys to these

entities. The KMM synchronizes with other

KMMs, authenticates the keys, and supplies

them under the appropriate format and the

agreed Quality of Service (QoS) to both SAE

ends.

The KMM supports the following functions: i)

Key authentication; ii) Key storage; iii) Key

protection; iv) Key identification; v) Key provision

to applications on request; vi) Key replacement

on request vii) Key destruction (based on decided

key lifetime; viii) Management of the key pool; ix)

Allocation of keys to applications based on the

agreed QoS performance; x) Synchronisation

between KMM entities for key exchange; xi) Key

relay. The (x) and (xi) functions are essential to

support a hop-by-hop key delivery between

successive 6G BSs as in Fig.1. Finally, it is

pointed out that since the KMM receives digital

Fig. 1: Processes for secure message exchanges between

rooftops based on FSO-QKD technology.

bits, it is agnostic to the specific QKD technology

used, while the KML/TN node presented

architecture is rather generic.

Overall, the KMM manages the pool of stored

keys and keep them in a stable, managed state

(e.g. by writing off any expired keys etc). A source

SAE may request a secure data connection to a

destination SAE by means of the corresponding

interface (API) exposed by its local KMM module.

The KMM is responsible for the management of

the stored keys including the functions of key

protection, provisioning, and destruction.

Each KMM module consists of several s/w

sub-modules as follows: the Event Manager that

is tasked with registering the events originating

from the NBI and SBI interfaces while it includes

an App Request Handler to process new

requests from the SAEs. The Key Allocation

Element (KAE) allocates the generated keys to

the applications in an orderly fashion.

The KAE ensures that key allocation complies

with a) the agreed QoS parameters set during the

request phase; b) the instructions from the QKD

Controller. The Synchronizer implements the

synchronisation between KMM modules within

the KM Link as of [4]. Similarly, the Key Relay

Element (KRE) serves to deliver keys on a hop-

by-hop basis between roof-tops following [8]. The

Statistics Manager Element (SME) collects and

analyses various statistics (e.g. unallocated keys,

allocated keys, etc). Finally, Key Store caches

the symmetric keys, the App Store registers

application related information (including app

characteristics and requested QoS) while the

Metric Store stores the raw metrics collected and

the corresponding analyzed statistics.

The Sequence of QKDN Operations

In the proposed framework, the end-to-end

delivery of quantum keys is made possible

following the steps as in Fig.2. QKD modules

create symmetric keys in the form of quantum bits

(1). The corresponding digital byte strings are

delivered to the KMM modules using the

appropriate interfaces (2). Each key is

represented by its identification number (key_id)

and the actual key data (key_raw). After

Application requests a secure connection (3), the

source SAE requests a new Key Distribution

Service (KDS) from the local KMM (4) which

provides the connection details (e.g. the SAE

addresses) and the desired QoS performance.

The ‘source’ KMM forwards the request to the

QKD Controller which identifies to both SAE-ends

the physical path and it forwards the necessary

notifications to the relevant KMMs (5). These

KMMs create a KDS and turn to ‘standby’ to

allocate keys to the specific application.

With an appropriate message the Controller

notifies the KMMs for each KMM role (i.e. Master

or Slave), the QoS parameters and whether key

relay is necessary. In Fig.2, the KMM(A) is

Master, and the KMM(B) is Slave for the

connection A->B while for the connection B -> C,

KMM(B) is Master and the KMM(C) is Slave.

Fig. 3: The KMM architecture.

QKD Module

KMS
- Data store
- Key manager
- Key scheduler
- Statistics gen.

Application

OpenAPI (REST, JSON)

OpenAPI
(REST, JSON)

QKD Module

Application

OpenAPI
(REST, JSON)

OpenAPI
(REST, JSON)

KM Link [ITU-T Y.3800]

Quantum channel

POST (keys)

Key Store

Key Manager
Synchronizer

App Request
Handler

Key Allocation
Scheduler

Event
Manager

KMM

KMM

App StoreMetric Store

Statistics
Manager

GUI / Dashboard

GET
(statistics)

Key Relay [ITU-T Y.3803]
Key Relay

QKD Driver QKD Driver

QKD Controller

QKD Control IF [ETSI GS QKD 015]

Fig. 2: A schematic illustration of the QKD Layer Architecture and QKD logical sequence

Service Layer

QKD Control Layer

Key Management
Layer

Quantum Layer
QKD Module

QKD Module
Driver

Key Management
Module (KMM)

Application Application

KM Link

QKD Controller

TN

QKD Module

QKD Module
Driver

Key Management
Module (KMM)

QKD Module

QKD Module
Driver

Key Management
Module (KMM)

QKD Module

KM Link

1

2

1

2

1

2

1

3

4
5 5

5

6

7

88

Data

A B C

Keys X Keys X Keys Y Keys Y

Key Relay (Keys X⊕Y)

Keys X Keys X

9

TN TN

Quantum
channel

Quantum
channel

A KMM Master allocates keys to the specific KDS

and informs the KMM Slave of this decision. The

KMM(A) allocates {n keys, X} (where X is the first

QKD Module pair) to the specific application and

informs KMM(B) (6). The same process is

repeated for B->C (7) and KMM(C) allocates {n

keys, Y} to the application (where Y is the second

QKD Module pair). In this way, the two SAEs

receive the same keys since, based on the key

relay functionality realised between KMM(B) and

KMM(C), the KMM(B) sends the XOR (X⊕Y) of

the allocated keys, so the KMM(C) retrieve the

keys X, by combining the keys X⊕Y and keys Y.

Finally, SAEs use the keys received to

encrypt/decrypt the data exchanged in the

classical network link between the SAEs (9).

Reference Implementation and Deployment

The KMM of Fig. 3 is implemented, deployed, and

evaluated. In detail, the KMM entity was

developed as a RESTful Web Service using Java

JAX-RS and was deployed on an Apache

Application Server. NBI/SBI and inter-KMM

interfaces were realized in REST/JSON following

[5],[6] while the interface between KMM and the

QKD Controller is as in [7].

To validate the implementation, two QKD

Drivers are developed generating QKD 64-based

encoded bit array symmetric keys of 32 bytes in

size. In addition, a couple of SAEs are

implemented with conventional encryption to

emulate the encrypted data communication of a

classical channel. Also, a QKD Controller is

developed, capable of controlling two KMMs.

As the components are running as services,

the architecture of Fig.3 is deployed in a

Kubernetes cluster as shown in Fig.4. All

components are deployed as Pods (building

blocks of Kubernetes), while the communication

between the pods is realized as a set of

Kubernetes services. The Kubernetes cluster

includes three nodes: one is the ‘Master’ (top

Fig.4), while others are ‘Workers’ (bottom of

Fig.4) emulating the two TNs of a QKD link

between two rooftops.

After Fig.4, the emulated digital QKD keys are

generated and pushed to the corresponding

KMMs (1). The keys are stored in the unallocated

keys queue of KMMs (2). After a SAE launches a

KDS request to the source KMM (3), the KMM

analyses the QoS parameters of the request and

creates a new QKD service (4). Here, the SAEs

requests 1 key (of 32 bytes length) per sec. The

key allocation service runs periodically (every

0.5s in our case) and allocates any spare keys to

the appropriate service queues based on their

QoS parameters (5). During a particular

allocation cycle, the master KMM (A here) sends

a key allocation message to slave KMM (B here)

and the slave KMM reciprocates (6) creating a

symmetric service. Then both source-destination

SAEs receive the keys from the respective KMMs

(7). During the final step, the two SAEs are

synchronised, so they use the digital quantum

keys for data encryption or decryption,

respectively.

Conclusions

We have designed, implemented, deployed, and

evaluated the basic functionality of QKD Key

Management and Control Layers to support the

secure handover of messages between 6G BSs

deployed at building rooftops. Open-source s/w

was used to implement the KMM and the

interfaces to other QKDN layers following ETSI

and ITU-T recommendations. Although the

AirQKD consortium considers FSO-QKD

technology, the proposed KML architecture is

technology-agnostic and, therefore, of wider

interest.

Acknowledgements

This work was supported by the Innovate UK

project AIRQKD.

Fig. 4: Testbed and reference implementation deployment

Pod (KMM A)

Pod (QKD Module
and Driver)

Pod (SAE A)

Server 2 (Ubuntu 20.04 LTS)
K8S Node 2 (Worker)

Pod (KMM B)

Pod (QKD Module
and Driver)

Pod (SAE B)

Server 1 (Ubuntu 20.04 LTS)
K8S Node 1 (Master)

3

1 1

QKD Keys generated and delivered to KMM

QKD Keys generated and delivered to KMM

2

24

QKD Distribution Service Request

5

6

7

7

7

Master/Slave
Synchronisation

Data

7

Server 3 (Ubuntu 20.04 LTS)
K8S Node 3 (Worker)

8

References

[1] Tariq, M. R. Khandaker, K.-K. Wong, M. A. Imran, M.
Bennis, and M. Debbah, "A speculative study on 6g,"
IEEE Wireless Communica- tions, vol. 27, no. 4, pp. 118-
125, 2020.

[2] K. Matsuda et al., "Field Demonstration of Real-time 14
Tb/s 220 m FSO Transmission with Class 1 Eye-safe 9-
aperture Transmitter," Optical Fiber Communications
Conference and Exhibition (OFC), San Francisco, CA,
USA, 2021, pp. 1-3

[3] https://gtr.ukri.org/projects?ref=45364

[4] ITU-T Y.3800, "Overview on networks supporting
quantum key distribution", October 2019

[5] ETSI GS QKD 004, "Quantum Key Distribution (QKD);
Application Interface", December 2020

[6] ETSI GS QKD 014, "Quantum Key Distribution (QKD);
Protocol and data format of REST-based key delivery
API", February 2019

[7] ETSI GS QKD 015, "Quantum Key Distribution (QKD);
Control Interface for Software Defined Networks", March
2021

[8] ITU-T Y.3803, "Quantum key distribution networks - Key
management", December 2020

