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Abstract The integration of QKD technology for 6G deployments facilitates advanced protection against 

attacks on critical infrastructures. We detail, implement and demonstrate the Key Management and 

Control Layer operations of a Free Space Optics-based QKD link for network access including key 

delivery with QoS guarantees. 

Introduction 

Quantum technologies have the potential to 

instigate advanced security in 6G network 

infrastructures. Quantum Key Distribution (QKD) 

provides this security inherently as the keys 

cannot be accessed without tampering [1]. 

Among the candidate QKD technologies, Free-

Space Optics (FSO) [2] may deliver high-grade 

security in a cost-effective way due to the high 

throughput and high-beam directivity.  

Amongst the cryptographic services based on 

FSO-QKD, the UK-funded AirQKD project [3] is 

considering the secure handover between 6G 

Base Stations (BSs) for critical services like 

Vehicle-to-Infrastructure (V2I). For the V2I use-

case, 6G X-Haul data is carried securely over 

FSO-QKD transceivers with an optical reach of 

150-200m, placed on building rooftops to 

exchange secret keys within Line-of-Sight (see 

Fig.1).  

A 6G V2I application that is hosted in ‘servers’ 

requires a cryptographic service to encrypt a 

"message" via a classic protocol, e.g., Advanced 

Encryption Standard (AES) and thus it requests a 

quantum key to implement this encryption. A 

quantum key is generated via the FSO link by 

means of the BB84 QKD protocol. These keys 

are used to secure the classic encryption and, 

hence, the messages are exchanged between 

the two terminal points securely. 

Overview of the FSO-QKD Architecture 

Following various standards recommendations 

[4][8], the AirQKD end-to-end cryptographic 

service is made possible by means of 

coordinated actions between four layers; namely, 

i) the Quantum Layer; ii) the Key Management 

Layer (KML); iii) the QKD Control Layer; and iv) 

the Service Layer as shown in Fig.2. 

In particular, the KML stores and manages the 

QKD keys as well as the synchronisation and 

reformatting of the bit strings. The Key 

Management Module (KMM) together with the 

QKD module and QKD driver reside in the same 

Trusted Node (TN). The KMM exposes interfaces 

to various cryptographic applications that aim to 

create a secure data link by means of QKD 

symmetric keys. The KMM receives key requests 

from Secure Application Entities (SAEs), and it 

allocates the appropriate number of keys to these 

entities. The KMM synchronizes with other 

KMMs, authenticates the keys, and supplies 

them under the appropriate format and the 

agreed Quality of Service (QoS) to both SAE 

ends. 

The KMM supports the following functions: i) 

Key authentication; ii) Key storage; iii) Key 

protection; iv) Key identification; v) Key provision 

to applications on request; vi) Key replacement 

on request vii) Key destruction (based on decided 

key lifetime; viii) Management of the key pool; ix) 

Allocation of keys to applications based on the 

agreed QoS performance; x) Synchronisation 

between KMM entities for key exchange; xi) Key 

relay. The (x) and (xi) functions are essential to 

support a hop-by-hop key delivery between 

successive 6G BSs as in Fig.1. Finally, it is 

pointed out that since the KMM receives digital 

 
Fig. 1: Processes for secure message exchanges between 

rooftops based on FSO-QKD technology. 



 

  

bits, it is agnostic to the specific QKD technology 

used, while the KML/TN node presented 

architecture is rather generic.   

Overall, the KMM manages the pool of stored 

keys and keep them in a stable, managed state 

(e.g. by writing off any expired keys etc). A source 

SAE may request a secure data connection to a 

destination SAE by means of the corresponding 

interface (API) exposed by its local KMM module. 

The KMM is responsible for the management of 

the stored keys including the functions of key 

protection, provisioning, and destruction. 

Each KMM module consists of several s/w 

sub-modules as follows: the Event Manager that 

is tasked with registering the events originating 

from the NBI and SBI interfaces while it includes 

an App Request Handler to process new 

requests from the SAEs. The Key Allocation 

Element (KAE) allocates the generated keys to 

the applications in an orderly fashion. 

The KAE ensures that key allocation complies 

with a) the agreed QoS parameters set during the 

request phase; b) the instructions from the QKD 

Controller. The Synchronizer implements the 

synchronisation between KMM modules within 

the KM Link as of [4]. Similarly, the Key Relay 

Element (KRE) serves to deliver keys on a hop-

by-hop basis between roof-tops following [8]. The 

Statistics Manager Element (SME) collects and 

analyses various statistics (e.g. unallocated keys, 

allocated keys, etc). Finally, Key Store caches 

the symmetric keys, the App Store registers 

application related information (including app 

characteristics and requested QoS) while the 

Metric Store stores the raw metrics collected and 

the corresponding analyzed statistics.  

The Sequence of QKDN Operations 

In the proposed framework, the end-to-end 

delivery of quantum keys is made possible 

following the steps as in Fig.2. QKD modules 

create symmetric keys in the form of quantum bits 

(1). The corresponding digital byte strings are 

delivered to the KMM modules using the 

appropriate interfaces (2). Each key is 

represented by its identification number (key_id) 

and the actual key data (key_raw). After 

Application requests a secure connection (3), the 

source SAE requests a new Key Distribution 

Service (KDS) from the local KMM (4) which 

provides the connection details (e.g. the SAE 

addresses) and the desired QoS performance. 

The ‘source’ KMM forwards the request to the 

QKD Controller which identifies to both SAE-ends 

the physical path and it forwards the necessary 

notifications to the relevant KMMs (5). These 

KMMs create a KDS and turn to ‘standby’ to 

allocate keys to the specific application. 

With an appropriate message the Controller 

notifies the KMMs for each KMM role (i.e. Master 

or Slave), the QoS parameters and whether key 

relay is necessary. In Fig.2, the KMM(A) is 

Master, and the KMM(B) is Slave for the 

connection A->B while for the connection B -> C, 

KMM(B) is Master and the KMM(C) is Slave.         

 
Fig. 3: The KMM architecture. 
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Fig. 2: A schematic illustration of the QKD Layer Architecture and QKD logical sequence 
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A KMM Master allocates keys to the specific KDS 

and informs the KMM Slave of this decision. The 

KMM(A) allocates {n keys, X} (where X is the first 

QKD Module pair) to the specific application and 

informs KMM(B) (6). The same process is 

repeated for B->C (7) and KMM(C) allocates {n 

keys, Y} to the application (where Y is the second 

QKD Module pair). In this way, the two SAEs 

receive the same keys since, based on the key 

relay functionality realised between KMM(B) and 

KMM(C), the KMM(B) sends the XOR (X⊕Y) of 

the allocated keys, so the KMM(C) retrieve the 

keys X, by combining the keys X⊕Y and keys Y. 

Finally, SAEs use the keys received to 

encrypt/decrypt the data exchanged in the 

classical network link between the SAEs (9). 

Reference Implementation and Deployment 

The KMM of Fig. 3 is implemented, deployed, and 

evaluated. In detail, the KMM entity was 

developed as a RESTful Web Service using Java 

JAX-RS and was deployed on an Apache 

Application Server. NBI/SBI and inter-KMM 

interfaces were realized in REST/JSON following 

[5],[6] while the interface between KMM and the 

QKD Controller is as in [7].  

To validate the implementation, two QKD 

Drivers are developed generating QKD 64-based 

encoded bit array symmetric keys of 32 bytes in 

size. In addition, a couple of SAEs are 

implemented with conventional encryption to 

emulate the encrypted data communication of a 

classical channel. Also, a QKD Controller is 

developed, capable of controlling two KMMs.  

As the components are running as services, 

the architecture of Fig.3 is deployed in a 

Kubernetes cluster as shown in Fig.4. All 

components are deployed as Pods (building 

blocks of Kubernetes), while the communication 

between the pods is realized as a set of 

Kubernetes services. The Kubernetes cluster 

includes three nodes: one is the ‘Master’ (top 

Fig.4), while others are ‘Workers’ (bottom of 

Fig.4) emulating the two TNs of a QKD link 

between two rooftops. 

After Fig.4, the emulated digital QKD keys are 

generated and pushed to the corresponding 

KMMs (1). The keys are stored in the unallocated 

keys queue of KMMs (2). After a SAE launches a 

KDS request to the source KMM (3), the KMM 

analyses the QoS parameters of the request and 

creates a new QKD service (4). Here, the SAEs 

requests 1 key (of 32 bytes length) per sec. The 

key allocation service runs periodically (every 

0.5s in our case) and allocates any spare keys to 

the appropriate service queues based on their 

QoS parameters (5). During a particular 

allocation cycle, the master KMM (A here) sends 

a key allocation message to slave KMM (B here) 

and the slave KMM reciprocates (6) creating a 

symmetric service. Then both source-destination 

SAEs receive the keys from the respective KMMs 

(7). During the final step, the two SAEs are 

synchronised, so they use the digital quantum 

keys for data encryption or decryption, 

respectively. 

Conclusions 

We have designed, implemented, deployed, and 

evaluated the basic functionality of QKD Key 

Management and Control Layers to support the 

secure handover of messages between 6G BSs 

deployed at building rooftops. Open-source s/w 

was used to implement the KMM and the 

interfaces to other QKDN layers following ETSI 

and ITU-T recommendations. Although the 

AirQKD consortium considers FSO-QKD 

technology, the proposed KML architecture is 

technology-agnostic and, therefore, of wider 

interest. 
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Fig. 4: Testbed and reference implementation deployment 
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