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Abstract The interaction among wavelength division demultiplexing (WDD), frequency offset estimation, 

and receiver-side IQ impairment compensation in Nyquist WDM systems is reported for the first time. 

We propose a novel WDD scheme effective against such interactive impairments and demonstrate its 

performance through proof-of-concept transmission experiments. ©2023 The Authors 

Introduction 

Nyquist wavelength-division-multiplexing (WDM) 

systems can realize ultimate spectral efficiency 

while avoiding inter-symbol interference (ISI) and 

inter-channel crosstalk [1-3]. Nyquist WDM 

signals need to be demultiplexed by digital filters 

having steep cut-off characteristics. In the 

presence of the frequency offset, the frequency 

discrepancy between the transmitter laser and 

local oscillator, a non-adaptive filter eliminates a 

part of the target channel spectrum and passes a 

part of its adjacent-channel spectrum. Thus, the 

signal is impaired by ISI and inter-channel 

crosstalk in the process of wavelength division 

demultiplexing (WDD). Although adaptive filters 

can demultiplex Nyquist-WDM signals with the 

frequency offset, such filters must have long-

delay taps to attain steep cut-off characteristics.  

This background yielded the basic WDD 

framework for Nyquist WDM systems [4]. The 

concept is to shift the passband frequency of the 

WDD filter according to the frequency offset value 

obtained by the frequency offset estimator. The 

estimation of the frequency offset is conducted 

after coarse WDD and polarization recovery with 

adaptive filters having short-delay taps. With this 

scheme, the target channel can be extracted with 

the sharp cut-off filters under the frequency offset. 

However, this WDD framework fails when the 

signal simultaneously suffers from frequency 

offset and receiver-side IQ impairments including 

IQ skew, IQ-power mismatch, and IQ-phase 

mismatch. This interaction causes crosstalk and 

has already been discussed for digital sub-carrier 

multiplexing systems [5-9]; the crosstalk can be 

eliminated by multiple-input multiple-output 

processing using multiple sub-carriers within the 

same channel [6,7]. In Nyquist WDM systems, 

however, a part of the adjacent channel spectra 

is diminished by the analogue filter in the receiver. 

Consequently, the same scheme cannot be 

applied to Nyquist WDM systems.  

In this paper, we propose, for the first time, a 

novel WDD scheme that can handle the 

interactive impairments inherent in Nyquist WDM 

systems. We first elucidate the interaction of the 

frequency offset and receiver-side IQ 

impairments, which occurs in the WDD process. 

Afterwards, the performance of the proposed 

scheme is experimentally shown. No notable 

degradation is observed in the proof-of-concept 

experiments assuming Nyquist WDM systems.  

Principle of WDD in Nyquist WDM Systems 

WDD under Frequency Offset 

To demultiplex Nyquist WDM signals under an 

arbitrary frequency offset, the passband 

frequency of the WDD filter must be altered to suit  

the frequency offset. Fig. 1 shows the concept of 

the WDD framework for Nyquist WDM systems 

[4]. This scheme enables the receiver to extract 

the target signal by adjusting the passband 

frequency of the WDD filter according to the 

output of the frequency-offset estimator. Since 

remnants of the adjacent channel disturb the 

operation of the adaptive filters for polarization 

division demultiplexing, the WDD filter should 

precede the adaptive filters.  

 
Fig. 1: Concept of the frequency-offset-adaptive WDD.  

WDD under Frequency Offset and Receiver-

side IQ Impairments 

The interaction of frequency offset and receiver-

side IQ impairments causes crosstalk within the 

Nyquist WDM signal. The spectrum of the 

received signal under frequency offset 𝜔𝑜  is 

given by  
S(𝜔)=𝑆𝐿(𝜔 − 𝜔𝑜) + 𝑆𝑇(𝜔 − 𝜔𝑜) + 𝑆𝑅(𝜔 − 𝜔𝑜), (1) 
where 𝑆𝐿(𝜔) , 𝑆𝑇(𝜔) , and 𝑆𝑅(𝜔)  represent the 

spectrum on the left side of the target signal 

spectrum, the spectrum of the target signal, and 

the spectrum on the right side of the target signal, 

respectively. Here, we assume that a part of 

𝑆𝐿(𝜔) and 𝑆𝑅(𝜔) are diminished by the analogue 

filter in the receiver. The widely linear (WL) model 
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Fig. 2: Crosstalk occurrence process due to the interaction between the frequency offset and receiver-side IQ impairments. 

 
Fig. 3: Straightforward process of WDD and WL equalization. 

 
Fig. 4: Proposed process of WDD and WL equalization. 

describes the signal spectrum including receiver-

side IQ impairments by 

�̂�(𝜔) = 𝐻1(𝜔) S(𝜔)+𝐻2(𝜔) 𝑆
∗(𝜔), (2) 

where 𝐻1(𝜔)  and 𝐻2(𝜔)  are complex numbers 

that express receiver-side IQ impairments [10]. 

Fig. 2 shows the origin of the crosstalk under both 

frequency offset and receiver-side IQ 

impairments. The signal spectrum originating 

from the complex conjugate overlaps on the 

target channel spectrum and becomes crosstalk. 

The crosstalk can be eliminated through WL 

equalization given by 

W1(𝜔)�̂�(𝜔) +W2(𝜔)�̂�
∗(𝜔) = S(𝜔), (3) 

where W1(𝜔)  and W2(𝜔)  are 𝐻1
∗(𝜔)

|𝐻1(𝜔)|
2−|𝐻2(𝜔)|

2  and 
𝐻2(𝜔)

|𝐻2(𝜔)|
2−|𝐻1(𝜔)|

2, respectively. 

The WDD function needs to precede the 

adaptive filters to ensure stable operation. 

However, if the WDD filters and the WL filters are 

straightforwardly connected as shown in Fig. 3(a), 

a part of the inter-band crosstalk remains in the 

output as shown in Fig. 3(b). In addition, receiver-

side IQ impairments can never be fully 

compensated due to the lack of necessary signal 

components for WL equalization.  

To realize WDD while compensating receiver-

side IQ impairments simultaneously, WDD for the 

received signal and its complex conjugate must 

be done independently. Fig. 4(a) shows the 

concept of the proposed WDD scheme. The 

transition of spectral overlap is shown in Fig. 4(b). 

The received signal and its complex conjugate 

are processed by the WDD filters before WL 

equalization. The WDD filters have the same 

passband frequency, and their centre frequency 

is shifted according to the estimated frequency 

offset value. This scheme can eliminate inter-

channel crosstalk and the crosstalk caused by 

the interaction between the frequency offset and 

receiver-side IQ impairments. 

Experiments 

We measured bit-error ratios (BERs) of 3-ch 32-

Gsymbol/s DP 16QAM signals to evaluate the 

performance of the proposed WDD scheme, 

where the guardband bandwidth is set to 1 GHz 

considering frequency stability of the lasers 

adopted. Fig. 5 shows the experimental setup. 

We used external-cavity lasers (ECLs) whose 

linewidths were 100 kHz. The target signal and 

the non-target signals were formed 

independently with two IQ modulators driven by 

an arbitrary waveform generator (AWG), which 

generated 4-level Nyquist-shaped IQ signals. 

Polarization division multiplexing (PDM) was 

conducted in split-delay-combine manner. The 

target and non-target channels were combined 

by a 2×1 optical coupler. This yielded 3-ch 

Nyquist WDM 32-Gsymbol/s DP 16-QAM signals. 

 
Fig. 5: Experimental setup. 
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The total optical power of the three WDM was 

adjusted with a variable optical attenuator (VOA). 

After 100 km transmission through optical fibre, 

amplified spontaneous emission (ASE) noise 

was loaded onto the signals. Finally, the signals 

were filtered, pre-amplified, and coherently 

detected. The passband of the anti-aliasing filters 

was 23 GHz. Sampling rate of the analogue-to-

digital converter was 50 Gsample/s. The digitized 

signal was then input to our digital signal 

processing (DSP) circuit, see Fig. 6. Our DSP 

circuit consisted of seven layers of filters. The red 

processing blocks/lines correspond to newly 

added/modified functions compared to the state-

of-the-art multi-layer filter reported in 2022 [11]. 

We parameterized frequency offset and receiver-

side IQ skew. We compared four demodulation 

schemes as detailed in Tab. 1.  

Fig. 7 shows bit-error ratio (BER) 

performance of the centre channel as a function 

of the frequency offset, where receiver-side IQ 

skew was set to 0 s. All BERs in scheme A are 

worse. This is because the cut-off characteristics 

of short-delay-tap filters are blunt compared to 

the WDD filter. Scheme B offers the best BER 

only when the frequency offset is 0 Hz; its 

performance is seriously degraded if frequency 

offset is present. Schemes C and D offer the best 

performance irrespective of the frequency offset. 

Fig. 8 shows BER measured as a function of 

receiver-side IQ skew, where the frequency offset 

is also parametrized. Scheme A shows unstable 

operation and all BERs are worse due to the large 

inter-channel crosstalk. Scheme B yields the best 

performance only when the frequency offset is 0 

Hz. Scheme C suffers performance degradation 

when the frequency offset and the receiver-side 

IQ impairments coexist. Scheme D, which is our 

proposed scheme, suffers no notable penalty 

even if the frequency offset and the receiver-side 

IQ impairments are present. In this way, the 

proposed scheme can eliminate the crosstalk 

created by the interaction between the frequency 

offset and receiver-side IQ skew. 

Conclusions 

We elucidated the principle of the interaction of 

WDD, frequency offset estimation, and receiver-

side IQ impairment compensation in Nyquist 

WDM systems. The proposed WDD scheme in 

conjunction with other advanced DSP functions 

can offset the combined system impairments. 

Experiments showed that the proposed scheme 

yielded the best performance with no notable 

penalty.  
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Fig. 6: Configuration of the DSP circuit. (SLF: strictly linear filter and WLF: widely linear filter). 

 

Tab. 1: Tested schemes. 

  
Fig. 7: Measured frequency offset tolerance without IQ impairments. 

 

 
Fig. 8: Measured tolerance for receiver-side IQ impairments and the frequency offset. 
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