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Abstract We propose ADMIRE+, an enhanced collaborative data-driven and model-driven routing 
engine in IP/optical networks. With the enhanced exploration by intrinsic curiosity and dynamic graph 
attention networks, 11.5% wavelength saving and 19.6% average latency reduction are demonstrated 
in a cross-layer network testbed compared to ADMIRE. ©2023 The Author(s) 

Introduction 
The IP over WDM architecture is showing a new 
trend of flat development, enabled by the usage 
of pluggable coherent transceivers with high-
capacity and long-distance [1-3]. With this 
technique, WDM optical signals can be directly 
emitted by an IP router and then sent to the 
Reconfigurable optical add/drop multiplexers 
(ROADMs) without intermediate Optical-
Electrical-Optical (OEO) conversions. It would 
become a cost-effective solution to build the 
future metro core networks to support B5G/6G [4] 
and datacenter interconnection [5]. 

With this new trend and emerging applications 
in a metro area, routing in IP over WDM networks 
will become more complicated and dynamic. The 
IP/optical cross-layer routing, which essentially is 
a traffic grooming [6] problem, have been well 
investigated in a series of literatures [7,8]. 
Recently, due to the remarkable decision-making 
ability, deep reinforcement learning (DRL) was 
applied to traffic grooming [9-12]. In our previous 
work, we proposed a collaborative data-driven 
and model-driven routing engine (ADMIRE) [9-
10], which uses convolutional neural network 
(CNN)-enabled DRL to dynamically modify the 
edge weights of auxiliary graph (AGEW). 
However, its performance is limited by the 
insufficient ability to explore the network 
environment. For one thing, the CNN-based 
agent in ADMIRE shows poor performance on 
precepting network states with Euclidean 
structure [13]. For another, the reward set as the 
negative number of newly activated wavelengths 
mostly is zero (i.e., sparse reward), which leads 
to ineffective action-value feedback. The above 
issues increase the difficulty of exploration and 
eventually leads to a local optimal solution. 

In this paper, we propose ADMIRE+, an 
enhanced version of ADMIRE, which realizes an 
enhanced exploration to the network 
environment through intrinsic curiosity module 

(ICM) and dynamic graph attention networks 
enabled DRL (DGAT-DRL). By analysing state 
and action to generate curiosity towards 
environmental novelty, ICM adds an intrinsic 
reward to encourage agent to preferably explore 
(i.e., internal exploration). Meanwhile, DGAT is 
responsible for efficiently extracting the features 
of dynamic networks (i.e., external exploration). 
Through joint exploration to the environment, 
ADMIRE+ makes more intelligent RWA decisions 
for the network. We evaluate ADMIRE+ in a nine-
node testbed, which achieves 11.5% wavelength 
saving and 19.6% average latency reduction than 
ADMIRE. Simulation results in a large topology 
also verify the superiority of ADMIRE+. 

ADMIRE+ with Enhanced Exploration 
Mechanism 
ADMIRE+ collaborates the exploration to the 
internal/external network environment and 
determines suitable AGEW to make optimized 
RWA decisions. Fig. 1 presents the procedure of 
ADMIRE+ which consists of three modules. 

Module 1: DGAT-enabled external exploration. 
As shown in Fig. 1(a), we integrate DGAT [14] to 
the agent for efficiently analysing the state 𝑠𝑠𝑡𝑡 
from environment. Initially, the agent extracts the 
correlation between nodes through analysing the 
network state 𝑠𝑠𝑡𝑡𝑛𝑛 , which is the remaining 
wavelength capacity of all links. The message 
that indicates the importance of neighbour node j 
to node 𝑖𝑖 is called attention coefficient 𝑒𝑒𝑖𝑖𝑖𝑖, which 
is respectively calculated and normalized in 
Eqs. (1-2), where ℎ�⃗ 𝑖𝑖 is the feature of node 𝑖𝑖, 𝑊𝑊 is 
a linear transformation. Specifically, by executing 
the attention mechanism 𝐴𝐴  at the end, the 
attention becomes dynamic and makes the agent 
explore the external environment better. Finally, 
as shown in Eq. (3), the updated feature ℎ′���⃗ 𝑖𝑖  of 
node 𝑖𝑖 is generated by averaging the aggregated 
features based on 𝐾𝐾  independent attention 
mechanisms. Fig. 1(a) illustrates the multi-head 
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attention (with 𝐾𝐾  = 3 heads) by node 1 on its 
neighbours. 

𝑒𝑒𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑇𝑇𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿(�𝑊𝑊ℎ�⃗ 𝑖𝑖,𝑊𝑊ℎ�⃗ 𝑖𝑖�) (1) 
𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝑠𝑠𝑖𝑖�𝑒𝑒𝑖𝑖𝑖𝑖� (2) 

ℎ′���⃗ 𝑖𝑖 = 𝜎𝜎(
1
𝐾𝐾
� � 𝛼𝛼𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖∈𝑁𝑁𝑖𝑖

𝑊𝑊𝑘𝑘ℎ�⃗ 𝑖𝑖

𝐾𝐾

𝑘𝑘=1

) (3) 

The network state 𝑠𝑠𝑡𝑡𝑛𝑛  updated by DGAT is 
concatenated by the request state 𝑠𝑠𝑡𝑡𝑟𝑟 , which 
includes one-hot encoded source/destination 
node and 24-hour traffic bandwidth demand. 
Then they are fed to a fully connected neural 
networks (FCNN) to output customized action 𝐿𝐿𝑡𝑡. 
By relational reasoning of graph message, DRL 
agent with DGAT is excelled at exploring the 
complex dynamic network. 

Module 2: Cross-Layer routing with optimal 
AGEW. AG is a classical model for traffic 
grooming, which simplifies the cross-layer routing 
problem by finding the least cost path in a single 
layer. To dynamically optimize AG for each 
service flow, 𝐿𝐿𝑡𝑡  are designed as eight kinds of 
AGEW, which are selected from discrete action 
spaces designed as the cartesian product of a set 
of empirical values [7]. As shown in Fig. 1(b), we 
assign the AGEW to tune the strategy of traffic 
grooming and make RWA decision for the current 
network state 𝑠𝑠𝑡𝑡 . Accordingly, the network 
environment converts to the state 𝑠𝑠𝑡𝑡+1. 

Module 3: Internal exploration motivated by 
ICM. After conducting the action 𝐿𝐿𝑡𝑡, DRL agent 
receives feedback from the environment and 
learns how to maximize the reward for a specific 
task. To avoid the adverse effects of sparse 
reward on exploration efficiency, we propose a 
dense feedback mechanism by using double 

rewards. In addition to the extrinsic reward 𝑟𝑟𝑡𝑡𝑒𝑒 
provided by the environment, we add an intrinsic 
reward 𝑟𝑟𝑡𝑡𝑖𝑖 by importing ICM [15], which is shown 
in Eq. (4). 

The generation process of the dense reward 
𝑟𝑟𝑡𝑡  is shown in Fig. 1(c). The agent forms a 
cognition and interest to the environment through 
predicting what will happen next [16]. Prediction 
error is used to measure how familiar the agent is 
with the next state 𝑠𝑠𝑡𝑡+1 . Generally, higher 
familiarity with the next state means less curiosity. 
Firstly, we encode the states 𝑠𝑠𝑡𝑡 , 𝑠𝑠𝑡𝑡+1  to extract 
the state features ∅(𝑠𝑠𝑡𝑡), ∅(𝑠𝑠𝑡𝑡+1). In the forward 
model F, we predict the next state feature ∅�(𝑠𝑠𝑡𝑡+1) 
by the action 𝐿𝐿𝑡𝑡  and the current feature ∅(𝑠𝑠𝑡𝑡) . 
Specially, the intrinsic reward 𝑟𝑟𝑡𝑡𝑖𝑖 is calculated as 
Eq. (5), where 𝜂𝜂 > 0 is a scaling factor. To make 
the agent ignore irrelevant features, we introduce 
inverse model G with self-supervision to modify 
the encoded model. 

𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑡𝑡𝑒𝑒 + 𝑟𝑟𝑡𝑡𝑖𝑖 (4) 
𝑟𝑟𝑡𝑡𝑖𝑖 =

𝜂𝜂
2
�∅�(𝑠𝑠𝑡𝑡+1) − ∅(𝑠𝑠𝑡𝑡+1)�

2
2 (5) 

min
𝜃𝜃𝐼𝐼

𝐿𝐿𝐹𝐹(∅�(𝑠𝑠𝑡𝑡+1),∅(𝑠𝑠𝑡𝑡+1)) (6) 
min
𝜃𝜃𝐼𝐼

𝐿𝐿𝐼𝐼(𝐿𝐿�𝑡𝑡 , 𝐿𝐿𝑡𝑡) (7) 
By reward shaping, the optimization target of 

DRL changes to maximize the sum of reward 𝑟𝑟𝑡𝑡 
and minimize loss function of model F and G as 
shown in Eqs. (6-7), where 𝜃𝜃𝐹𝐹 and  𝜃𝜃𝐼𝐼  are 
parameters to optimize the prediction error 
between predicted values and actual values. The 
intrinsic reward from ICM motivates the agent to 
pursue novelty and surprising states for 
improving the internal exploration competence to 
the environment. 

 
Fig. 1: Procedure of ADMIRE+. (a) DGAT-enabled external exploration, (b) Cross-layer routing with optimal AGEW, (c) ICM-

motivated internal exploration. 



  

Experimental Setup and Results 
We demonstrate the performance and feasibility 
of ADMIRE+ in a cross-layer network testbed as 
shown in Fig. 2(a), which consists of nine hybrid 
optical-electrical switching nodes and twelve 
bidirectional links. Each node is set with a 
ROADM and an E-switch. Each fiber includes 
three wavelengths with total capacity of 3×10 
Gbps. And the fiber length between nodes is set 
to 20 km. The traffic dataset with 100 bidirectional 
flows was collected from real base stations in 
Shenzhen, China. The 24 h variable traffic load is 
tidal over a day ranging from 0 to 1.2 Gbps and 
mostly peaks in the afternoon. Fig. 2(b) shows 
the verification process of ADMIRE+. Firstly, we 
load the dataset into the traffic generator and 
analyse (TGA). Meanwhile, connection requests 
are sent to the network management system 
(NMS) and the SDN controller. The SDN 
controller is used to execute ADMIRE+ and set 
up connections automatically. Then service flows 
generated by the TGA are routed in the testbed. 
The network statuses from ROADMs and E-
switches are reported to the NMS and displayed 
in the graphical interface. At last, service flows 
will be looped back to the TGA for analysis.  

We train the DRL agent of ADMIRE+ with 
Deep Q-Networks (DQN) [17]. The model adopts 
3 attention heads and 3 DGAT layers with 32 
hidden neurons. The following is a FCNN layer 
with 256 hidden neurons, applying a ReLU 
activation. In ICM, the encoded model consists of 
2 FCNN layers with 512×256 hidden neurons, 
the forward and inverse model both have 3 FCNN 
layers with 256×64×32 hidden neurons. 

We compare ADMIRE+ with DGAT-DRL, 
ADMIRE and the traditional grooming policy to 
minimize the number of wavelength-links (minWL) 

[8]. The above four algorithms are applied to 
determine the routing of 200 unidirectional flows 
under the objective of minimizing wavelength 
usage and average latency respectively. By 
enhancing exploration to the complex and sparse 
environment, ADMIRE+ achieves the best 
optimization performance. In Fig. 2(c), ADMIRE+ 
clearly outperforms DGAT-DRL, ADMIRE and 
minWL with wavelength utilization increased by 
6.1%, 11.5% and 17.9% respectively. As shown 
in Fig. 2(d), ADMIRE+ reduces the end-to-end 
average latency of 200 flows with 12%, 19.6% 
and 28.8% than others. We also validated 
ADMIRE+ in GEANT [18] with 23 nodes and 37 
bidirectional links, and we set the length of each 
fiber between nodes to 20 km. As shown in 
Fig. 2(e), ADMIRE+ realizes 3.7%, 7.1% and 
10.3% wavelength saving than others. In Fig. 2(f), 
it reduces 4.5%, 10.8% and 27.1% average 
latency than others. 

Conclusions 
We proposed ADMIRE+ for routing optimization 
in IP/optical networks. Experimental results in a 
nine-node testbed indicated that ADMIRE+ can 
further optimize the RWA decision with enhanced 
exploration by ICM and DGAT. ADMIRE+ 
achieves 11.5% wavelength saving and 19.6% 
average latency reduction compared to our 
previous work ADMIRE. The simulated results in 
large topology also have a satisfactory 
performance, with 7.1% wavelength saving and 
10.8% latency reduction. 
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Fig. 2: (a) ADMIRE+ testbed, (b) Verification process, (c) No. of wavelength vs. No. of unidirectional flows in a 9-node 

topology, (d) End-to-end latency vs. 4 algorithms in a 9-node topology, (e) No. of wavelength vs. No. of unidirectional flows in 
GEANT, (f) End-to-end latency vs. 4 algorithms in GEANT. 
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