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Abstract Detector dead time is a major limitation on the achievable key rate of QKD systems. We pro-
pose a dead-time compensated BB84 scheme using detector arrays and demonstrate that remarkable
gains in sifted bit rate proportional to the size of array can be achieved. ©2023 The Author(s)

Introduction

Quantum key distribution (QKD) is uncondition-
ally secure in theory, but its security needs to be
ensured under practical limitations[1]. In discrete-
variable (DV) QKD protocols, practical photon
counters such as single-photon avalanche diodes
(SPADs)[2] are adopted as detectors. SPADs have
precise time resolution, allowing for potential QKD
transmission rates beyond GHz range. However,
after each photon detection, SPADs should be
quenched resulting in a finite dead time, τ , during
which the detector is unable to respond to new
incident photons[3]. With typical dead time in the
range of tens of nanosecond, this causes a major
limitation on secret key rates of DV-QKD systems.

There are limited investigations on the impact
of detector dead time on QKD. For existing DV-
QKD systems, to avoid dead-time issues, the
transmission rate are commonly adjusted so that
the received photon rate is less than 1/τ , lim-
iting the maximum generation rate of sifted bits
to less than 1/2τ [4]. Note that the sifted bits are
formed by those encoded states where Alice and
Bob select the same measurement basis, so the-
oretically the sifted bit rate (SBR) increases as the
transmission rate increases[5].

Compensating for the detector dead time is cru-
cial to go beyond the sift rate limit of 1/2τ [4],[6].
However, in such sub-dead-time transmission
regime, a modified sifting scheme is required to
avoid security issues caused by the possibility
of closely spaced alternating photon detection
events in the same basis. This leads to a po-
tential security loophole for BB84 protocol, unless
only one qubit is sifted during any sequence of al-
ternating detection events, and this would signif-
icantly limit SBR[7]. To compensate for the dead
time effect, in this paper, we propose the use of
SPAD arrays that output the superposition of pho-
ton counts of their individual elements replacing
single SPADs in the conventional BB84 scheme.

The SPAD array has already been utilized
in quantum imaging and microscopy applica-

tions[8]–[10], owing to its fast response to single
photons. Considering varying channel condi-
tions, the SPAD array has been used in classi-
cal free-space optical (FSO) communication re-
ceivers[3] to produce adaptive sensitivity and its
performance has been optimised against dead
time[11],[12]. Moreover, the use of SPAD arrays
is reported to develop large field-of-view QKD
systems while limiting the collected background
noise through post-processing[13].

To the best of our knowledge, the use of de-
tector arrays for effective compensation of dead
time effect in QKD systems has not been pro-
posed before. Focusing on the BB84 protocol,
we introduce a high-speed detection and sifting
model using detector arrays instead of single-
element detectors. We model the qubit sifting
operation for the proposed QKD system and de-
rive the probability of sifting analytically when the
background noise is negligible, showing an excel-
lent agreement with simulation results. We show
that SBR significantly increases as detector array
size grows.

BB84 QKD with Linked Array Detectors
In this paper, we focus on the polarization-
encoded[14] BB84 protocol. The quantum bits
(qubits) are encoded in two linear polarization
bases[15]: rectilinear (0◦ and 90◦) or diagonal (45◦

and −45◦). On each transmission period or clock
cycle, a single polarization encoded photon is
sent to Bob via the quantum channel, which can
be based on fibre or FSO. The total path gain γ

is defined as the probability that an Alice’s trans-
mitted photon is collected by Bob’s receiver. As
Bob chooses the measurement bases randomly,
50% of the bits are compatible with Alice’s, which
contribute to the sifted key[16].

Unlike typical BB84 implementation[6] with sin-
gle SPADs detecting photons at different polariza-
tions, we consider an array of single-photon de-
tectors per polarization. Note that the mentioned
dead-time induced security loophole[7] happens
regardless of using single or multiple elements at



the detector. For example, for single-element de-
tectors, photon arrivals at an active detector (e.g.,
rectilinear polarisation 0◦) when the other detec-
tor in the same basis (i.e., rectilinear polarisation
90◦) is still in the quenching process would lead
to alternating detection for the two detectors if the
dead time is longer than interval between the two
photon arrivals. This means that Eve can possi-
bly extract all the information from such alternat-
ing detection sequence if she knows the first de-
tector fired at the start of the sequence. Hence,
inspired by the ’actively disabling’ scheme pro-
posed in[4],[17], we introduce our modified detec-
tion scheme for BB84 with array detectors where
we link the corresponding elements of detector ar-
rays of the two polarizations at the same basis
such that a photon detection in an element of one
detector array would also trigger a dead time in
the linked element of the other detector array of
the same basis, leading to both linked elements
become inactive simultaneously. Therefore, after
each photon detection the number of active ele-
ments of the two arrays remains the same.

Statistical Model of QKD with Detector Arrays
In order to analyze the performance of the pro-
posed BB84 QKD system with detector arrays, we
develop a Markov chain model to describe tran-
sition among the states of the linked array de-
tectors in each basis. In this model, the states
of the individual linked pairs of detector elements
indicate whether they are already active now or
the number of clock periods it takes to turn ac-
tive. Here we define the quantity K = τρTX

which is the number of clock periods per dead
time, and it is assumed to be an integer, where
ρTX is the photon transmission rate. The num-
ber of elements per detector array is denoted by
M . Note that the linked detector elements from
the two arrays have equivalent states, so a sin-
gle state can be used to represent the behav-
ior of each linked pair. Thus, we define an M -
dimensional Markov model to describes M linked
pairs from the two arrays. Each detector element
can take K + 1 possible states representing the
number of clock periods (0 to K) it takes to be-
come active. In effect, the Markov model will be
M -dimensional with K + 1 states across each di-
mension, e.g., see Fig. 1 for 3-element detec-
tor arrays with M = 3 linked pairs. Note that the
states are represented as an M -dimensional vec-
tor, (k1, k2, · · · , ki, · · · , kM ), where ki denotes the
numbers of clock periods left until the elements of
the ith linked pair become active again so ki = 0

Fig. 1: Markov model of a Bob’s basis with M = 3 and
K = 5. Blue arrows show a transition cycle originating from

state (0,0,0) with transition probabilities annotated.

means that the linked pair is already active.
Fig. 1 shows examples of transition probabil-

ity between different states for the Markov model
with M = 3 and K = 5. For example, the proba-
bility that a particular linked pair fires is γ/6 (i.e.,
γ

2M for arbitrary M noting the 2 bases), leading
to a possible transition from state (0, 0, 0) to the
state (5, 0, 0). If there is no photon hitting the
other two active linked pairs in the next clock cy-
cle (which happens with probability is 1 − γ/3,
the basis would evolve to state (4, 0, 0). Note
that we cannot have states with identical non-
zero entries since this would represents a simul-
taneous detection happened at some linked de-
tector pairs, which are indicated by grey points
in Fig. 1. However, in this work, we assume
perfect single-photon sources and ignore back-
ground noise, i.e., there is maximum one signal
photon arriving at the receiver per clock period.
This analysis is extended to the noisy case in the
extended version of this paper[18], where we also
show that the proposed M -dimensional Markov
model is irreducible and aperiodic with a unique
stationary probability distribution.

Now, we determine the stationary proba-
bility distribution of the Markov chain model.
Let P (k1, · · · , kM−1, kM ) denote the steady-state
probability of the state (k1, · · · , kM−1, kM ). We
also define Pi(k1, ..., ki) as the probability of
the state with i non-zero entries and K − i

zero entries. Note that, in this definition, the
zero entries are eliminated, i.e., Pi(k1, ..., ki) =

P (0, ..., 0, k1, ..., ki). Due to the symmetry of the
Markov model across different dimensions, any
permutation of the entries will generate states
with the same steady-state probability.



Lemma 1. In the stationary probability distribution
of the proposed M -dimensional Markov chain,
the probability of all the states with i (0 < i ≤ M)

nonzero entries are equal, that is

Pi(k1, · · · , ki) = Pi(k1
′, · · · , ki′) ≜ Pi. (1)

Lemma 1 is proved by writing the transition prob-
ability equations and considering the uniqueness
of the solution for the linear set of transition equa-
tions as detailed in the extended version of the
paper[18]. Applying this lemma, the general form
of transition probability can be written for states
with m non-zero entries (1 ≤ m ≤ M ) as

Pm =
γ

2M
Pm−1 + (M −m)

γ

2M
Pm (2)

Pm−1 = [1− (M −m+ 1)
γ

2M
]Pm−1

+ (M −m+ 1)[1− (M −m)
γ

2M
]Pm,

(3)

which result in the following recursive relationship

Pm =
γ

2M

1− (M −m) γ
2M

Pm−1 (4)

In addition, using lemma 1, the law of total prob-
ability of the steady-state Markov chain yields

P0 +

M∑
m=1

(
M

m

)
K(K − 1) · · · (K −m+ 1)Pm = 1.

where The term
∑M

m=1

(
M
m

)
K(K − 1) · · · (K −

m + 1) corresponds to the number of states with
m nonzero entries in the M -dimensional Markov
chain. Inserting (4) in the above equation, we get
the analytical expression of P0 as

P0 =[1 +

M∑
m=1

(
M

m

)
[

m∏
m′=1

(K + 1−m′)

γ
2M

1− (M −m′) γ
2M

]]−1,

(5)

while the expressions of Pi,∀0 < i ≤ M can be
derived iteratively using (4).

SBR Performance Analysis

The QKD system can detect qubits when at least
one linked pair is active, Hence SBR can be writ-
ten considering probabilities P0, P1, . . . , PM−1 as

SBR =
1

2
ρTXγP0(1 +

M−1∑
m=1

(
M

m

)
M −m

M

(

m∏
m′=1

(K + 1−m′)
γ

2M

1− (M −m′) γ
2M

)).

(6)

Fig. 2: The sifted bit rate versus qubit transmission rate for
γ = −13 dB. Lines and markers of same colors show the

corresponding analytical and simulation results respectively.

where (4) is used to write Pi’s as P0 and P0 is
given by (5). The term ρTXγ denotes the pho-
ton arrival rate at the receiver, while the factor 1

2

represents the compatibility probability of bases
between Alice and Bob, and M−m

M represents the
probability that the incoming photon hits an active
element of the partly active detector arrays. In-
serting (5) into (6) and tending the transmission
rate to infinity, it can be shown after some manip-
ulation that SBR is asymptotically bounded as

lim
ρTX→∞

SBR =
M

τ
. (7)

This shows that a remarkable gain proportional
to the size of array (M ) is achievable in the SBR
of the QKD system when using detector arrays
instead of single-element detectors.

Fig. 2 depicts the SBR results of the optical
QKD system with different M assuming γ = −13

dB. The figure shows an excellent agreement be-
tween the analytical (lines) and the simulation
(markers) results. Compared with the green curve
with the single SPAD, we can observe consid-
erable gains in terms of SBR when ρTX is high
enough. For example, using 4× 4 detector arrays
(i.e., M = 16) can provide a gain factor of ap-
proximately SBR(16)/SBR(1) ≈ 15 at 100 GHz
photon transmission rate. In general, the curves
with different values of M approximately confirm
the theoretical upper bound in equation (7).

Conclusions
A high-speed BB84 receiver based on detector
arrays are proposed showing significant gains in
SBR at high photon transmission rates almost
proportional to the size of arrays. This is a
remarkable finding showing potential significant
gains for the achievable secret key rate.
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