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Abstract We review various use cases of distributed-fiber-optic-sensing and machine-learning 

technologies that offer advantages to telecom fiber networks on existing fiber infrastructures. By 

leveraging an edge-AI platform, perimeter intrusion detection and impulsive acoustic event classification 

can be performed locally on-the-fly, ensuring real-time detection with low latency. ©2023 The Author(s) 

Introduction 

Distributed fiber optic sensing (DFOS) 

technology, which utilizes the fundamental 

sensing capabilities of optical fiber, has been 

applied in diverse applications, such as 

earthquake detection and monitoring [1], pipeline 

leakage detection [2], structure change 

monitoring [3], road traffic monitoring [4]. In 

recent years, there has been growing interest in 

applying fiber sensing technology to the telecom 

area, given the vast fiber infrastructures that 

telecom carriers have built over the past 30 years 

to support Internet traffic growth, particularly in 

preparation for 5G and beyond networks. While 

transmission fibers were originally intended 

solely for data transmission, they are now being 

explored as potential sensing media [5 – 7]. 
Operational telecom fiber networks offer 

significant potential for optical sensing 
applications. In turn, the sensing technology can 
be used to detect threats to the fiber 
infrastructure and contribute to community 
safety. In this paper, we reviewed field trial results 
utilizing fiber optic sensing and deep learning 
technologies for perimeter intrusion detection to 
safeguard the infrastructure and impulsive 
acoustic event detection to identify gunshot 
events for community safety.  

Principle of DFOS 

Figure 1 illustrates the key element of distributed 

fiber optic sensing: measuring nonlinear 

backscattering signals generated along the fiber 

route, including Rayleigh, Brillion and Raman [8]. 

Our study used a distributed acoustic sensing 

(DAS) system, based on Rayleigh optical time-

domain reflectometer (OTDR) detection [7], 

which measures changes in intensity of Rayleigh 

scattering through interferometric phase beating. 

With coherent detection, the DAS recovers full 

polarization and phase information of 

backscattering signals. The system used a 1550-

nm laser, sampling rate of 125 MHz, short optical 

pulses, and on-chip fast processing, achieving an 

equivalent sensor resolution as small as 1 meter. 

Experimental Setup 

Figure 2 presents the trial setup which includes a 

DAS in the central office (CO), 38-km field fiber, 

and extension fiber outside the CO to protect the 

facility. The extension fiber is comprised of three 

sections of cable: buried underground, attached 

to the fence, and hanging on poles with coils. The 

CO acts as a sensing backbone, utilizing existing 

fiber for environmental monitoring such as road 

traffic, and is then cascaded to extension fiber for 

new sensing branches for applications such as 

intrusion detection using buried cables and 

impulsive acoustic event detection through aerial 

cables. Fiber coils and fiber-based signal 

 
Fig. 1: Schematic of backscattering signals. 

 
 Fig. 2: Experimental Setup. 
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enhancers (FSEs) are simply integrated into the 

testbed, and event localization results are fused 

with video analytics to trace the subject 

associated with the event in space and time.  

Results 

In the study, fiber sensing and AI techniques are 

combined to provide data-driven solutions for 

various applications. Fig. 3 illustrates our 

multiple-in-one AI platform, which is hosted on a 

new architecture designed to run the pipelined 

computations locally. The platform incorporates 

multiple modules, making it more data-efficient 

and adaptable to dynamic environments. The 

platform can be trained end-to-end and provides 

results in real-time, enabling timely action. After 

receiving the sensing data, the engine filters out 

signals in normal conditions, such as road traffic 

trajectories, before feeding the data into the 

Fiber-InD (intrusion detection) and Fiber-IAD 

(impulsive acoustic event detection) modules. 

Fiber-InD module, based on convolutional 

neural network (ConvNet), is proposed to classify 

events, such as human walking, running, and 

digging, with outputs that include event type and 

auxiliary information such as the location, time 

stamp, direction along the cable, and the class 

probability. Additionally, this module can be 

expanded with more intrusion events such as 

fence shaking, climbing, and cutting, and 

distinguish animal related events. During the trial, 

three types of actions were observed near buried 

cables: digging, driving, and human walking. A 

total number of 65,516 image patches are 

randomly sampled from the recorded data across 

different days, using 70% of data for training and 

30% for testing. Each image patch has a size of 

50 × 100, equivalent to 30 seconds of time 

duration and 160 meters in location. We 

evaluated the proposed model’s classification 

performance using precision, recall, and F1-

score, the result is shown in Table 1. The 

confusion matrix between the three classes is 

shown in Table 2. Computationally, the inference 

time of the proposed model takes 0.528 seconds 

for a 20 km route on a laptop with NVIDIA 

RTX2080 Max Q GPU. 
Additionally, a multimodal impulsive acoustic 

event detection system was developed using 
aerial coils, buried fiber, FSEs, and cameras. 
This system is capable of detecting and localizing 
impulsive event via DAS where it received the 
vibration patterns excited from the source and 
tracking the source of the sound through video 
analytics. The cameras were triggered by DAS to 
pinpoint the person at the sound location as the 
potential threat with an alarming boundary box in 
its visual recording. The cameras used in the 
system were a regular camera (Camera 1) and a 
fisheye camera (Camera 2), both of which were 
placed at different angles to cover a wide area. A 
ConvNet based object detection model was 
trained to identify and track the location of a 
person detected by the cameras. The model used 
ResNet50 as the backbone and employed the 
cascade Region-based ConvNet detector with a 
shared region proposal network across datasets. 
The subject can be therefore identified and 
tracked by associating the location coordinates of 
the detected sound with the coordinates of the 
detected persons’ boundary box using an 
intersection over union operation. As shown in 
Fig. 5 (a) and (b), the subject was detected and 
tracked with a red boundary box in both cameras 
while pedestrians and vehicles are marked in 
green and blue boundary boxes. Additionally, the 
impulsive sound location was also visualized as 
the augmented heatmap through TDoA on a GIS. 
After that (Fig. 5(b)), the suspect invaded the 
protected area, which was in the camera’s blind 
zones, as shown in Fig. 5(c). However, the buried 
optical fiber can be clearly detecting the suspect’s 
footsteps and track his movement even in blind 

 
Fig. 3: Flow chart of the edge AI platform for simultaneous 

multipurpose sensing. 
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Table. 1: Intrusion detection classification results. 

 
Table. 2: Intrusion detection confusion matrix. 

 

Class Precision Recall F1-Score Support

Digging 0.97 0.73 0.84 1347

Driving 1.00 0.98 0.99 11531

Walking 0.92 0.99 0.96 6778

Overall 0.97 19656

Digging Driving Walking

Digging 986 0 361

Driving 8 11329 194

Walking 19 15 6744



  

zones of cameras. The system demonstrated the 
effectiveness of impulsive acoustic detection and 
tracing, particularly in cases where single-
modality detection is insufficient.  

One of the major challenges with impulsive 
acoustic event detection systems is false alarms. 
To address this issue, Fiber-IAD (shown in Fig. 3) 
was proposed, and a classifier was trained to 
distinguish multiple impulsive acoustic events 
based on the short-term power spectrum 
representation of the vibrations captured by the 
DAS. The data processing pipeline for this 
classification task includes temporal sliding-
window analysis, computation of Mel-frequency 
cepstral coefficients (MFCCs), and ConvNet 
inference. It should be noted that the storage of 
MFCC data samples does not raise any privacy 
concerns, as MFCCs are not audible to humans.  
The results of confusion matrix are shown in Fig. 
6 (a) and (b), different fireworks such as crackers, 
cannons, fountain cannons, and high-altitude 
fireworks were tested on FSE and fiber coil. Other 
safety-related sound events, such as car alarms, 
starter guns, and door slams, were also studied. 
By using the time-frequency information and 
viewing DAS-MFCC spectrogram as image 
patches, the approach reached high accuracy of 
>99% using FSE and >97% using fiber coil on 
held-out test data. This system can be used for 
recovering the crime scene and continuously 
monitoring different kinds of events, such as anti-
theft caused car alarm, car break-in, home break-
in, fireworks in the prohibited area, etc., to protect 
public safety in future smart and safer city 
applications.  

Conclusions 

To enhance public safety and security, we 

provided an integrated solution which combines 

intrusion detection from vibrational signals and 

impulsive event classification from acoustic 

signals, through a single DAS unit with dedicated 

cable installation schemes over existing telecom 

infrastructures.  

The proposed system utilizes fiber sensing and 

deep learning techniques to analyse low-level 

physical parameters and detect high-level 

acoustic events that could pose a threat to public 

safety and security. By using an edge AI platform, 

we were able to process large-volume of DAS 

sensing data with low latency, allowing us to 

achieve real-time response. The system has 

demonstrated the performance in detecting and 

classifying events, as well as further localizing 

and identifying potential threats through video 

analytics. With continuous innovation and 

development, we believe that this technology has 

the potential to significantly enhance public 

safety and security.   
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Fig. 5: Sensing fusion field results by integrating video and fiber sensing technologies to locate the subject. 

 
Fig. 6: Confusion matrix on (a) fiber-based signal enhancer 

(FSE) and (b) fiber coils. 
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