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Abstract We propose an online paradigm to simultaneously model and optimize Raman gain profiles. 

Real-time experiments demonstrate the proposed scheme can approach the optimal modelling and 

optimization performance within 30 data, reducing ~90% of the data compared with the scheme based 

on an offline-built model. ©2023 The Author(s) 

Introduction 

With the rapid development of the Internet 

applications, the global data traffic is increasing 

dramatically. To avoid capacity crunch and 

further exploit the existing fiber infrastructures, 

future optical transmission bandwidth will be 

scaled from C-band to C+L, or even C+L+S-band 

[1,2]. In such a scenario, Raman amplifiers (RAs) 

can be an appealing choice for fiber attenuation 

compensation [3]. Besides low noise figures, RAs 

have a potential in providing a broad gain profile 

with arbitrary shapes by adjusting the power of 

each Raman pump. 

To realize the gain profile optimization (GPO) 

of RAs efficiently, heuristic algorithms are firstly 

utilized, which are time-consuming since massive 

gain profile calculations or measurements are 

needed [4,5]. Recently, neural networks (NNs) 

are adopted to build a digital twin (DT) for fast 

gain spectrum estimations. Then, the GPO can 

be conducted quickly based the differentiable DT 

[6-9]. However, current NN-based methods 

follow a paradigm of firstly offline modelling and 

then online optimization, requiring an offline 

training procedure to construct an accurate DT 

before optimization. Therefore, a large dataset 

with hundreds to thousands of randomly-

collected data is required. Actually, the extensive 

measurement for an RA is quite expensive and 

time-consuming, hindering the practical 

utilization in a commercial optical network with a 

large number of RAs. 

To address this issue, in this paper, a novel 

paradigm is proposed to conduct modelling and 

GPO simultaneously in an online system. By 

freezing and unfreezing the inner weights of a 

NN-based DT, the DT and pump configurations 

are updated based on gradient descent (GD) 

iteratively. The proposed scheme does not 

require constructing an accurate NN-based DT 

before GPO, so that the burden of the offline data 

collection can be significantly alleviated. An 

online experimental validation in a C+L-band 

amplification system is conducted. The proposed 

scheme can simultaneously build the DT and 

conduct the GPO, and both of their optimal 

performances can be achieved using ~30 data, 

reducing ~90% data compared to the offline-

trained model with randomly-collected data. 

Principle 

The proposed scheme is illustrated in Fig. 1. 

When the GPO starts, in step ○1 , an NN-based 

DT for the RA is initialized by randomization or 

training with a small dataset, which can be written 

as 𝑮 =  𝑓NN(𝑷) . 𝑷  and 𝑮  are the vectors 

representing the pump configurations and gain 

profiles, respectively. Then, in the online 

            
Fig. 1: The workflow of the proposed scheme for simultaneous online modeling and optimization for an RA. 
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optimization stage (step ○2 ), the inner weights of 

the NN-based DT are frozen. With the GD, the 

input 𝑷  are updated by minimizing the mean-

squared-error (MSE) between the NN’s output 
and target gain, denoting as 𝑮Pred  and 𝑮       

respectively. Afterwards, the optimized pump 

configuration is obtained and fed to the real 

system. Then, the corresponding gain spectrum, 

denoted as 𝑮 Real, is measured (step ○3 ). 

If the error between the 𝑮Real  and 𝑮Target  is 

larger than the threshold 𝛿threshold, the measured 

data is added to the training dataset to update the 

DT in the online modelling stage (step ○4 ). In this 

stage, same as the traditional NN training, the 

inner weights of the NN are unfrozen and 

updated based on GD. Afterwards, the updated 

DT is utilized to reconduct the online optimization 

in step ○2  and derive a new optimized pump 

configuration. In this way, step ○2  to ○4  are 

conducted iteratively until the error between 𝑮Real 
and 𝑮Target is smaller than 𝛿threshold.  

When finishing the GPO for one target gain, a 

DT trained along with the optimization is obtained. 

If the network status changes and a new gain 

profile is required, the DT obtained during the 

previous optimization procedure can be directly 

employed without initialization. In this way, the 

knowledge learned from the previous 

optimization procedures can be used to speed up 

the next round of optimization. 

Experimental setup 

A real-time experiment is conducted to 

demonstrate the effectiveness of the proposed 

scheme. The experimental setup is shown in Fig. 

2(a). First, an amplified spontaneous emission 

(ASE) noise source is utilized to simulate a flat 

C+L-band signal spectrum from 186.6 THz to 

196.4 THz. Two 50:50 couplers are used to 

provide suitable attenuations and set the total 

signal power to 15.5 dBm. Then, the signal is 

transmitted in an 82.8-km standard single mode 

fiber. A distributed RA with four counter-

propagating pumps is employed and the 

wavelengths of the pumps are 1428 nm, 1454 nm, 

1490 nm, and 1509 nm. The power of each pump 

can be adjusted individually by controlling the 

pump current. The signal spectra with and 

without amplification are measured by an optical 

spectrum analyser (OSA) to calculate the on-off 

gain. The measurement method is shown in Fig. 

2(b). The OSA and RA are controlled by a host 

computer through IP networking. Automatically, 

procedures such as the device controlling, online 

modeling, and GPO are processed with Python 

on the host computer.  

The NN-based DT has four input features to 

represent the controlling values of the pump 

currents. The output is a 400-dimensional vector 

depicting the gain spectra. The NN has two 

hidden layers with 17 and 60 nodes. The 

activation functions are Sigmoid. To initialize the 

DT in step ○1 , we collect 5 randomly sampled 

data for pre-training. During training, early-stop 

with a patience of 1000 is utilized. 70% and 30% 

of the data are used for training and validation, 

respectively. We collect 460 gain spectra under 

different pump configurations randomly as the 

testing dataset for following accuracy evaluations, 

which are shown in Fig. 2(c).  

 
Fig. 2: (a) The automatic experimental setup for online modeling and optimization. (b) The measurement method for the on-off 

gain. (c) The experimentally measured on-off gain spectra under various pump configurations. 

       
      

           

 

      

       
      

      

   

                   

                

 
 
  
  
 
 
  

   
      

     
         
     

          
       

     
        

                      
           
              

   
         
        

         
      
     

         

             
                                

               

                   

                

            

 

 
Fig. 3: (a) The optimized gain profiles of the proposed scheme. (b) and (c) are the optimized gain profiles of the NN-based baseline 

models trained with 30 data and 300 data, respectively. In each figure, the measured gain, target gain and the gain estimated by the 

NN-based DT are shown. (d) The optimization RMSEs of each method with different target gains. 

                                         
            



  

When the real-time optimization starts, the 
first 𝑮        is assumed to be 2 dB. Then, we 

further consider a situation that the target gain 

changes from 2 dB to 4 dB, 6 dB, and 8 dB 

sequentially. The changes of the gain profiles are 

assumed to simulate network reconfigurations 

due to the changes of the link loss or power 

optimizations.  

Optimization Performance Evaluations 

We first analyze the GPO performance. In Fig. 

3(a), the gain profile obtained by the proposed 

scheme is shown. In the experiment, the online 

GPO finishes the first optimization target of 2 dB 

in 11 iterations and finishes the four assumed 

optimization targets in 21 iterations. So, only 26 

measured data are collected (5 for initialization), 

which is data-efficient. The experiments are 

conducted for three times with different DT 

initializations for stability analysis. The GPO 

performance is stable with a root-mean-square 

error (RMSE) fluctuation less than 0.15 dB. 

Additionally, the proposed scheme can realize all 

the assumed optimization targets within 25 

iterations, i.e., within 30 collected data. 

The baseline GPO method for comparison is 

to perform GD on an offline-trained DT without 

online modelling. As shown in Fig. 3(b), if relying 

on the offline-trained DT with 30 randomly-

collected data, the DT’s accuracy is low, resulting 

in unsatisfactory performance of GPO. By 

increasing the training data size to 300, the offline 

DT and GPO can both converge to a relatively 

stable and optimal precision, which are plotted in 

Fig. 3(c). The optimization RMSE of each method 

under different target gains are shown in Fig. 3(d). 

The results show that, compared with the offline-

trained DT with randomly-collected data, the 

proposed scheme can largely reduce the data 

needed to achieve the optimal GPO performance. 

Modeling Performance Evaluations 

We further investigate the online modelling 

performance. In Fig. 4(a), we illustrate the 

changes of DT’s accuracy on the testing dataset 

during the whole optimization processes with the 

four target gains. The results show that, the DT’s 

accuracy is gradually improved along with the 

GPO. With 21 iterations, the DT can reach an 
optimal accuracy. Additionally, when 𝑮       

changes, the GPO is reconducted and the DT’s 

accuracy can be further improved under the new 

optimization target. At the same time, the DT with 

higher accuracy can speed up the convergence 

of GPO with less iterations.  
It should be noted that, when 𝑮       is 2 dB, 

the accuracy of the DT obtained by the proposed 

scheme is 0.65 dB on the testing dataset in Fig. 

2(c). Meanwhile, the RMSE of the GPO 

performance is 0.12 dB, which is quite different 

from the modeling accuracy. To explain this, we 

test the DT on the datasets with different gain 

value distributions. As shown in Fig. 4(b), we 

generate four datasets containing gain profiles 

around the target gains with a ripple of 2 dB. The 

DTs after finishing each optimization target are 

tested on these datasets. The RMSEs are plotted 

in Fig. 4(c). We observe that after GPO, the 

obtained DT reaches a high accuracy on the 
dataset with gain values around 𝑮      . When the 

gain value deviates from 𝑮      , the DT’s 

accuracy reduces because the DT has not seen 

these data. By carefully learning about the region 
around 𝑮      , the DT built by the proposed 

scheme can reach a high accuracy in a certain 

subspace to effectively assist the GPO. 

Conclusions 

We propose a new paradigm which conducts 

online modelling and GPO simultaneously for an 

RA. A real-time experiment demonstrates the 

effectiveness of the proposed scheme in a C+L-

band amplification system. Compared with the 

optimization methods based on an offline training 

model with a large number of data, the proposed 

scheme can significantly reduce the needed data 

size for modelling to assist the efficient GPO. 
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Fig. 4: (a) The DT’s accuracy on the testing dataset during the GPO with the proposed scheme. The lines with different colors 

show the changes of the DT’s accuracy during the GPO with different target gains. (b) The datasets with different gain value 

distributions.  (c) The DT’s accuracy on the datasets with different gain value distributions after finishing each optimization target.  
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