
 
 

 Physics-Informed Digital Twin with Parameter Refinement for a 
Field-Trial C+L-Band Transmission Link 

Yuchen Song(1), Min Zhang (1), Yan Shi (2), Yu Tang (2), Yakun Hu (2), Shikui Shen, and Danshi Wang (1),* 
(1) State Key Laboratory of Information Photonics and Optical Communications, Beijing University of 
Posts and Telecommunications, Beijing, 100876, China, *danshi_wang@bupt.edu.cn, 
(2) China Unicom Research Institute, Beijing, 100044, China. 
 
Abstract Physics-informed neural operator is learned for multi-channel power evolution and facilitates 
the parameter refinement for accurate physical layer digital twin, which is demonstrated in a field-trial 
C+L-band link over different loadings, showing maximum 2.4dB and 1.4dB accuracy improvement for 
channel power prediction and QoT estimation. ©2023 The Author(s) 

Introduction 
Physical-layer digital twin (PHY-DT) attempts to 
simulate and interact with physical transmission 
link in real-time and is becoming the cornerstone 
of the intent-based network control for the 
intelligent optical networks [1-3]. The accurate 
estimation of Quality of Transmission (QoT) is 
crucial for PHY-DT to increase network capacity 
by exploiting system margin [4] and to facilitate 
online maintenance throughout the network's 
lifespan, e.g., amplifier configuration, resource 
allocation, and fault recovery [5-8]. As the 
growing data traffic, it is desired to upgrade to 
C+L-band transmission [9], which brings stronger 
Kerr nonlinearities and stimulated Raman 
scattering (SRS) effect, thereby magnifying the 
complexity and indispensability of PHY-DT.  

In contrast to lab experimental testbeds with 
controlled conditions, field-trial scenarios face 
severe problems of parameter uncertainties, 
which necessitates the online parameter 
refinement for accurate PHY-DT. Particularly, 
uncertain lump losses before and after each fibre 
span (i.e., due to lossy splice) will strongly affect 
the accuracies of the estimation of power and 
QoT, which have been investigated in [10,11] for 
C-band transmission. However, when upgrading 
to L-band, this issue is more intricate due to the 
disparate lump losses for C and L-band resulting 
from the separate span amplification. 
Furthermore, the wider transmission band 
introduces unneglectable frequency-dependent 
fibre attenuation and SRS, which has been 
proved to be important for wideband QoT 
estimation [12]. The strength of SRS was 
identified in [13] for various fibres but using time-
consuming differential evolution. 

The operational speed is critical for PHY-DT. 
With closed-form perturbation-based nonlinear 
interference (NLI) estimation [14], the speed 
bottleneck lies on the computation of fibre 
channel power evolution, where requires iterative 
numerical methods to solve a large set of 
ordinary differential equations (ODEs) [15,16]. 

Accordingly, a closed-form expression was 
derived in [17] with sacrificed accuracy. Deep 
learning-based methods have been proposed for 
end-to-end modelling in a data-driven manner 
[16]. However, these methods rely heavily on 
massive data collection and do not guarantee 
adherence to underlying physical laws, rendering 
them unreliable compared to methods based on 
prior knowledge. To overcome these limitations, 
recently proposed physics-informed neural 
networks incorporate physical laws as 
constraints within the loss function [18,19]. This 
unique feature makes them well-suited for 
reliable modelling [20] and parameter 
identification [21,22]. 

In this paper, we develop a PHY-DT that 
utilizes physics-informed modelling techniques 
for a field-trial C+L-band transmission link. 
Physics-informed neural operator is learned for 
channel power evolution in fibre, which improves 
the calculation speed and ensures compliance 
with physical laws. In particular, the incorporation 
of physical laws enables the refinement of lump 
losses, frequency-dependent attenuation, and 
SRS strength. Compared to coarse datasheet 
parameters, the results after refinement yield 
maximum 2.4dB and 1.4dB improvement for 
channel power prediction and QoT estimation. 
Physics-informed physical layer digital twin 
The proposed physics-informed PHY-DT 
comprises two main modules: fibre and erbium-
doped fibre amplifier (EDFA), describing the 
power evolution along the link and the 
accumulation of NLI and amplified spontaneous 
emission (ASE) noise. For NLI power calculation 
(PNLI), closed-form Gaussian noise (GN) model 
considering SRS effect is employed [23]. The 
EDFA model adds ASE noise power (PASE) and 
modifies channel power (Pn) with frequency-
dependent gain and noise figure profiles. For the 
multi-channel power evolution in fibre, the 
governing equation considering frequency- 
dependent attenuation and SRS is shown below 
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being N the number of transmitted channels, αn 
the frequency-dependent attenuation, Aeff the 
fibre effective area and fn the frequency of the nth 
channel. gR is the fiber Raman gain spectrum with 
r being its strength, which is directly related to the 
power transfer of SRS. For the nth channel, the 
general signal to noise ratio (GSNR) is used as 
the QoT metric: 
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n
n
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 For calculation of channel power Pn in fibre, Eq. 
(1) is typically solved using numerical split-step 
methods. These methods are computationally 
expensive with small step size over long 
transmission, resulting in the increased 
calculation time of the PHY-DT. In this study, we 
learn Eq. (1) using a closed-form neural operator 
in a physics-informed way, as illustrated in the top 
of Fig. 1. Notably, unlike data-driven neural 
networks that rely on massive labelled data 
collection, physics-informed neural operator 
incorporates the underlying physics [24], i.e., Eq. 
(1) describing power evolution, as a constraint in 
the loss function without any labelled data. This 
incorporation of physical laws not only enhances 
the generalization ability of the learned power 
evolution operator (PEO) but also enables the 
refinement of parameters within Eq. (1). 
 As shown in the top of Fig. 1, the structure of 
deep neural operator (DeepONet) comprises two 
neural networks: the branch net (BN) and the 
trunk net (TN) [25]. The TN samples the 
transmission distance z as inputs while the BN 
takes input channel powers s0 of different 
loadings as input. The PEO outputs at given z, 
denoted as Pn(z, θ), are obtained by merging two 
net outputs by a vector product. s0 is learned 

through the condition loss at z=0. For the physics-
informed regularization of PEO, f(z, θ, α, r) is 
minimized at random z as depicted in Fig. 1. For 
each span, the collection of physical parameters 
to be refined is denoted as Λ = {αn, r, δin,C(L), 
δout,C(L)} with the last two being the lump losses at 
the input and output for C(L)-band. When Λ are 
known, only the PEO parameter θ is updated, 
enabling the derivation of Pn(z, θ) satisfying Eq. 
(1) and s0. It should be emphasized that the 
physical regularization of Pn(z, θ) requires no 
labelled data, and the differential term in f can be 
calculated efficiently using the automatic 
differentiation built in deep learning libraries.  

Physics-informed methods are well-suited for 
parameter refinement tasks due to their inherent 
incorporation of physical parameters. The PEO is 
able for the refinement of Λ with the knowledge 
of span output channel power sm measured by 
optical channel monitoring (OCM). A pre-trained 
PEO is employed as it can provide a suitable 
starting point. Λ are updated along with the 
network parameters θ, ensuring the satisfaction 
of the constraints f and the boundary conditions 
at z=0 and z=zmax as illustrated in Fig. 1. 
Field-trial C+L-band transmission link 
The field-trial C48+L48 WDM transmission link 
under analysis in China Unicom’s metro optical 
networks is illustrated in Fig. 1. It consists of six 
amplified spans with a maximum length of 
86.4km (totalling 469.3km of G.652 SMF). A 
dynamic gain equalizer (DGE) is placed at the 
second site for channel power equalization, while 
in other sites, in-line EDFA is deployed for 
separated amplification of C- and L-band. OCM 
is placed at the front and end of EDFA for channel 
power collection. Three commercial 400Gb/s 
transponders on the C-band and two on the L-  
band are configured for five channels under test  
(CUT), and PCS-16QAM with 91.6 baud rate is  

 
Fig. 1: Schematic of the physics-informed PHY-DT (top) and the field-trial C+L-band transmission link (bottom). OUT denotes 

optical transport unit. θ denotes parameters of PEO. The number of neurons is shown at the bottom of networks. 
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modulated for optical transmission with 100GHz 
channel spacing. In the transceiver side, signals 
are mux/demux by ROADM, and other channels 
are filled with filtered ASE noise for full loading on 
C+L-band. The transmission bandwidth occupies 
the L-band, from 186.1 THz to 190.8 THz, and the 
C-band, from 191.4 THz to 196.1 THz with a total 
of 96 channels. We focus on the transmission 
from west to east station in this paper. The state 
of the network, including channel powers and 
EDFA config, was obtained by querying via 
controller. The link has been configured to an 
optimal performance by a vendor controller. 
Simulations for real-time forward prediction 
First, we select 5,000 different s0 at z=0 with 
random loadings to train this PEO, and for each 
channel, the launch power was either 0mW or 
varied between 0.1mW to 8mW. The 
transmission distance is sampled from 0 to 
120km. Approximately 1 hour was paid in the 
training process with GPU Tesla T4. However, 
once trained, the PEO can generalize well to 
unseen s0 thanks to the guidance of physical 
laws. Fig. 2(a) reports testing results after 120km 
transmission, with one full loading of uniform 
1mW launch power and a case of 80% random 
loading. Both results agree well with the 
numerical split-step methods of 100m step size, 
and the statistical test results are displayed in Fig. 
2(b). For testing cases with 1,000 new random 
loadings and within 120km, the normalized root 
mean-square-error (RMSE) generally falls in 
1x10-4. It can be observed that the accuracy 
decreases a bit with longer distance and more 
channels. The time can be reduced by up to 100 
times using the closed-form PEO compared to 
numerical methods in this set up (network size is 
shown in Fig. 1). The PEO serves as a fast yet 
accurate solver for channel power prediction. 
Field-trial validations of PHY-DT 
We take the first span of this operating field-trial 

link as an example, the coarse data-sheet 
parameters of Λ are δin(out),C(L)=1dB, 
α=0.21dB/km, and r=1. Eight pairs of channel 
powers before and after this span measured by 
OCM along the regular operations are used as 
boundary conditions. The updating trace of these 
refined parameters are depicted in Fig. 2(c)(d). 
This process can be done parallelly for each 
span. With these refined parameters, the 
prediction accuracy for channel power and QoT 
can be improved. The results for full loading are 
shown in Fig. 2(e)(f), and the accuracy of power 
is improved from 1.1 to 0.12 (RMSE in dB units) 
with a per-channel accuracy improvement of 
0.8dB in average and 2.4dB in max. For CUT, the 
measured OSNR are delivered from controller, 
and the GSNR is derived from pre-FEC BER. The 
maximum per channel accuracy improvement of 
OSNR and GSNR for CUT is 1.6 and 1.4dB, 
respectively. For partial loading of C- and L-band, 
where the ASE channels are removed, the 
accuracy is overall improved as shown in Fig. 2 
(g)(h). It is worth noting that our approach 
remains effective even without OCM at the front 
of EDFA. In such cases, the non-flat gain profile 
can be absorbed in the refined parameters. 
Conclusions 
The effectiveness of physics-informed PHY-DT 
has been demonstrated on a field-trial C+L-band 
transmission link. The physics-informed PEO 
significantly reduces the operation time of PHY-
DT without compromising accuracy and enables 
online parameter refinement, resulting in a QoT 
estimation error reduction of up to 1.4dB across 
different loadings. This paper paves the way for 
the use of hybrid data and physics-based 
methods for PHY-DT in optical networks. 
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Fig. 2: (a) Channel powers at 120km for two loadings. (b) Statistical testing results for PEO under different loadings and distances. 
(c)(d) Update of refined parameters. Estimation of channel powers (e)(g) and QoT (f)(h) for three loads with refined parameters. 

x10-4

60% loadings
30% loadings

90% loadings

(a) (b)

Refinement

PEO

PEO

N
or

m
al

iz
ed

 R
M

SE

Coarse
Coarse

CUT
Coarse params

params

Coarse params
params

(c) (d)

(e) (f)
Coarse params

params

Coarse
CUT

Coarse params
params

Coarse
CUT

(g) (h)

L-band L-band

C-band C-band

R
ef

in
em

en
t



  

References 
[1] G. Borraccini, S. Straullu, A. Giorgetti, R. Ambrosone, E. 

Virgillito, A. D'Amico, R. D'Ingillo, F. Aquilino, A. 
Nespola, and N. Sambo, "Experimental Demonstration 
of Partially Disaggregated Optical Network Control Using 
the Physical Layer Digital Twin," arXiv preprint, DOI: 
10.48550/arXiv.2212.11874. 

[2] Q. Zhuge, "AI-driven Digital Twin for Optical Networks," 
in European Conference and Exhibition on Optical 
Communication, 2022: Optica Publishing Group, p. 
Mo3A. 1.  

[3] D. Wang, Z. Zhang, M. Zhang, M. Fu, J. Li, S. Cai, C. 
Zhang, and X. Chen, "The role of digital twin in optical 
communication: fault management, hardware 
configuration, and transmission simulation," IEEE 
Communications Magazine, vol. 59, no. 1, pp. 133-139, 
2021, DOI: 10.1109/MCOM.001.2000727. 

[4] A. W. MacKay and D. W. Boertjes, "Field Learnings of 
Deploying Model Assisted Network Feedback Systems," 
in Optical Fiber Communication Conference, 2022: 
Optica Publishing Group, p. W4G. 2, DOI: 
10.1364/ofc.2022.w4g.2. 

[5] B. Correia, R. Sadeghi, E. Virgillito, A. Napoli, N. Costa, 
J. Pedro, and V. Curri, "Power control strategies and 
network performance assessment for C+L+S multiband 
optical transport," Journal of Optical Communications 
and Networking, vol. 13, no. 7, p. 147, 2021, DOI: 
10.1364/jocn.419293. 

[6] N. Sambo, A. Ferrari, A. Napoli, N. Costa, J. Pedro, B. 
Sommerkorn-Krombholz, P. Castoldi, and V. Curri, 
"Provisioning in Multi-Band Optical Networks," Journal of 
Lightwave Technology, vol. 38, no. 9, pp. 2598-2605, 
2020, DOI: 10.1109/jlt.2020.2983227. 

[7] Y. Song, Q. Fan, C. Lu, D. Wang, and A. P. T. Lau, 
"Efficient Three-Step Amplifier Configuration Algorithm 
for Dynamic C+ l-Band Links in Presence of Stimulated 
Raman Scattering," Journal of Lightwave Technology, 
2022, DOI: 10.1109/jlt.2022.3223919 . 

[8] M. Devigili, M. Ruiz, N. Costa, A. Napoli, J. Pedro, and 
L. Velasco, "Dual Time and Frequency Domain Optical 
Layer Digital Twin," in European Conference and 
Exhibition on Optical Communication, 2022, p. Tu5. 42. 

[9] M. Cantono, R. Schmogrow, M. Newland, V. Vusirikala, 
and T. Hofmeister, "Opportunities and Challenges of 
C+L Transmission Systems," Journal of Lightwave 
Technology, vol. 38, no. 5, pp. 1050-1060, 2020, DOI: 
10.1016/b978-0-12-374965-9.10003-2. 

[10] A. Ferrari, K. Balasubramanian, M. Filer, Y. Yin, E. Le 
Rouzic, J. Kundrát, G. Grammel, G. Galimberti, and V. 
Curri, "Assessment on the in-field lightpath QoT 
computation including connector loss uncertainties," 
Journal of Optical Communications and Networking, vol. 
13, no. 2, p. A156, 2020, DOI: 10.1364/jocn.402969. 

[11] N. Morette, I. F. de Jauregui Ruiz, H. Hafermann, and Y. 
Pointurier, "On the robustness of a ML-based method for 
QoT tool parameter refinement in partially loaded 
networks," in Optical Fiber Communication conference, 
2022: Optica Publishing Group, p. M3F. 1, DOI: 
10.1364/ofc.2022.m3f.1  

[12] A. D'Amico, B. Correia, E. London, E. Virgillito, G. 
Borraccini, A. Napoli, and V. Curri, "Scalable and 
Disaggregated GGN Approximation Applied to a C+L+S 
Optical Network," Journal of Lightwave Technology, pp. 
1-1, 2022, DOI: 10.1109/jlt.2022.3162134. 

[13] U. C. de Moura, D. Zibar, A. Margareth Rosa Brusin, A. 
Carena, and F. Da Ros, "Fiber-Agnostic Machine 
Learning-Based Raman Amplifier Models," Journal of 
Lightwave Technology, vol. 41, no. 1, pp. 83-95, 2023, 
DOI: 10.1109/jlt.2022.3210769 . 

[14] P. Poggiolini, "The GN Model of Non-Linear Propagation 
in Uncompensated Coherent Optical Systems," Journal 

of Lightwave Technology, vol. 30, no. 24, pp. 3857-
3879, 2012, doi: 10.1109/jlt.2012.2217729, DOI: 
10.1109/jlt.2012.2217729 . 

[15] I. Roberts, J. M. Kahn, J. Harley, and D. W. Boertjes, 
"Channel Power Optimization of WDM Systems 
Following Gaussian Noise Nonlinearity Model in 
Presence of Stimulated Raman Scattering," Journal of 
Lightwave Technology, vol. 35, no. 23, pp. 5237-5249, 
2017, doi: 10.1109/jlt.2017.2771719, DOI: 
10.1109/jlt.2017.2771719. 

[16] A. R. Brusin, M. R. Zefreh, P. Poggiolini, S. Piciaccia, F. 
Forghieri, and A. Carena, "Machine learning for power 
profiles prediction in presence of inter-channel 
stimulated Raman scattering," in 2021 European 
Conference on Optical Communication (ECOC), 2021: 
IEEE, pp. 1-4, DOI: 10.1109/ecoc52684.2021.9605807. 

[17] A. Anchal and E. Lichtman, "A Few Milliseconds-Fast 
SRS-Induced Loss and Tilt Compensation Algorithm for 
Dynamic C+ L-band Networks," in European Conference 
on Optical Communication (ECOC), 2022, pp. 1-4.  

[18] M. Raissi, P. Perdikaris, and G. E. Karniadakis, 
"Physics-informed neural networks: A deep learning 
framework for solving forward and inverse problems 
involving nonlinear partial differential equations," Journal 
of Computational Physics, vol. 378, pp. 686-707, 2019, 
DOI: 10.1016/j.jcp.2018.10.045. 

[19] D. Wang, X. Jiang, Y. Song, M. Fu, Z. Zhang, X. Chen, 
and M. Zhang, "Applications of physics-informed neural 
network for optical fiber communications," IEEE 
Communications Magazine, vol. 60, no. 9, pp. 32-37, 
2022, DOI: 10.1109/mcom.001.2100961. 

[20] Y. Song, D. Wang, Q. Fan, X. Jiang, X. Luo, and M. 
Zhang, "Physics-Informed Neural Operator for Fast and 
Scalable Optical Fiber Channel Modelling in Multi-Span 
Transmission," in 2022 European Conference on Optical 
Communication (ECOC), 2022, pp. We.32. 

[21] Y. Song, Y. Zhang, C. Zhang, J. Li, M. Zhang, and D. 
Wang, "PINN for Power Evolution Prediction and Raman 
Gain Spectrum Identification in C+ L-Band Transmission 
System," in Optical Fiber Communication Conference, 
2023, p. Th1F. 5.  

[22] X. Jiang, D. Wang, X. Chen, and M. Zhang, "Physics-
Informed Neural Network for Optical Fiber Parameter 
Estimation From the Nonlinear Schrödinger Equation," 
Journal of Lightwave Technology, vol. 40, no. 21, pp. 
7095-7105, 2022, DOI: 10.1109/jlt.2022.3199782. 

[23] D. Semrau, E. Sillekens, R. I. Killey, and P. Bayvel, "A 
Modulation Format Correction Formula for the Gaussian 
Noise Model in the Presence of Inter-Channel 
Stimulated Raman Scattering," Journal of Lightwave 
Technology, vol. 37, no. 19, pp. 5122-5131, 2019, DOI: 
10.1109/jlt.2019.2929461. 

[24] S. Wang, H. Wang, and P. Perdikaris, "Learning the 
solution operator of parametric partial differential 
equations with physics-informed deeponets," Science 
advances, vol. 7, no. 40, p. eabi8605, 2021, DOI: 
10.26226/morressier.612f6736bc98103724100850. 

[25] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, 
"Learning nonlinear operators via DeepONet based on 
the universal approximation theorem of operators," 
Nature Machine Intelligence, vol. 3, no. 3, pp. 218-229, 
2021, DOI: 10.1038/s42256-021-00302-5. 

https://doi.org/10.48550/arXiv.2212.11874
https://doi.org/10.1109/MCOM.001.2000727
https://doi.org/10.1364/ofc.2022.w4g.2
https://doi.org/10.1364/jocn.402969
https://doi.org/10.1364/jocn.402969
https://doi.org/10.1109/jlt.2022.3223919
https://doi.org/10.1016/b978-0-12-374965-9.10003-2
https://doi.org/10.1364/jocn.402969
https://doi.org/10.1364/ofc.2022.m3f.1
https://doi.org/10.1364/jocn.402969
https://doi.org/10.1109/jlt.2022.3210769
https://doi.org/10.1109/jlt.2012.2217729
https://doi.org/10.1109/jlt.2017.2771719
https://doi.org/10.1109/ecoc52684.2021.9605807
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1109/mcom.001.2100961
https://doi.org/10.1109/jlt.2022.3199782
https://doi.org/10.1364/jocn.402969
https://doi.org/10.1364/jocn.402969
https://doi.org/10.1364/jocn.402969

	Physics-Informed Digital Twin with Parameter Refinement for a Field-Trial C+L-Band Transmission Link
	Introduction
	Physics-informed physical layer digital twin
	Field-trial C+L-band transmission link
	Simulations for real-time forward prediction
	Field-trial validations of PHY-DT
	Conclusions
	Acknowledgements
	References
	[1] G. Borraccini, S. Straullu, A. Giorgetti, R. Ambrosone, E. Virgillito, A. D'Amico, R. D'Ingillo, F. Aquilino, A. Nespola, and N. Sambo, "Experimental Demonstration of Partially Disaggregated Optical Network Control Using the Physical Layer Digital...
	[2] Q. Zhuge, "AI-driven Digital Twin for Optical Networks," in European Conference and Exhibition on Optical Communication, 2022: Optica Publishing Group, p. Mo3A. 1.
	[3] D. Wang, Z. Zhang, M. Zhang, M. Fu, J. Li, S. Cai, C. Zhang, and X. Chen, "The role of digital twin in optical communication: fault management, hardware configuration, and transmission simulation," IEEE Communications Magazine, vol. 59, no. 1, pp....
	[4] A. W. MacKay and D. W. Boertjes, "Field Learnings of Deploying Model Assisted Network Feedback Systems," in Optical Fiber Communication Conference, 2022: Optica Publishing Group, p. W4G. 2, DOI: 10.1364/ofc.2022.w4g.2.
	[5] B. Correia, R. Sadeghi, E. Virgillito, A. Napoli, N. Costa, J. Pedro, and V. Curri, "Power control strategies and network performance assessment for C+L+S multiband optical transport," Journal of Optical Communications and Networking, vol. 13, no....
	[6] N. Sambo, A. Ferrari, A. Napoli, N. Costa, J. Pedro, B. Sommerkorn-Krombholz, P. Castoldi, and V. Curri, "Provisioning in Multi-Band Optical Networks," Journal of Lightwave Technology, vol. 38, no. 9, pp. 2598-2605, 2020, DOI: 10.1109/jlt.2020.298...
	[7] Y. Song, Q. Fan, C. Lu, D. Wang, and A. P. T. Lau, "Efficient Three-Step Amplifier Configuration Algorithm for Dynamic C+ l-Band Links in Presence of Stimulated Raman Scattering," Journal of Lightwave Technology, 2022, DOI: 10.1109/jlt.2022.3223919 .
	[8] M. Devigili, M. Ruiz, N. Costa, A. Napoli, J. Pedro, and L. Velasco, "Dual Time and Frequency Domain Optical Layer Digital Twin," in European Conference and Exhibition on Optical Communication, 2022, p. Tu5. 42.
	[9] M. Cantono, R. Schmogrow, M. Newland, V. Vusirikala, and T. Hofmeister, "Opportunities and Challenges of C+L Transmission Systems," Journal of Lightwave Technology, vol. 38, no. 5, pp. 1050-1060, 2020, DOI: 10.1016/b978-0-12-374965-9.10003-2.
	[10] A. Ferrari, K. Balasubramanian, M. Filer, Y. Yin, E. Le Rouzic, J. Kundrát, G. Grammel, G. Galimberti, and V. Curri, "Assessment on the in-field lightpath QoT computation including connector loss uncertainties," Journal of Optical Communications ...
	[11] N. Morette, I. F. de Jauregui Ruiz, H. Hafermann, and Y. Pointurier, "On the robustness of a ML-based method for QoT tool parameter refinement in partially loaded networks," in Optical Fiber Communication conference, 2022: Optica Publishing Group...
	[12] A. D'Amico, B. Correia, E. London, E. Virgillito, G. Borraccini, A. Napoli, and V. Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network," Journal of Lightwave Technology, pp. 1-1, 2022, DOI: 10.1109/jlt.2022.316...
	[13] U. C. de Moura, D. Zibar, A. Margareth Rosa Brusin, A. Carena, and F. Da Ros, "Fiber-Agnostic Machine Learning-Based Raman Amplifier Models," Journal of Lightwave Technology, vol. 41, no. 1, pp. 83-95, 2023, DOI: 10.1109/jlt.2022.3210769 .
	[14] P. Poggiolini, "The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems," Journal of Lightwave Technology, vol. 30, no. 24, pp. 3857-3879, 2012, doi: 10.1109/jlt.2012.2217729, DOI: 10.1109/jlt.2012.2217729 .
	[15] I. Roberts, J. M. Kahn, J. Harley, and D. W. Boertjes, "Channel Power Optimization of WDM Systems Following Gaussian Noise Nonlinearity Model in Presence of Stimulated Raman Scattering," Journal of Lightwave Technology, vol. 35, no. 23, pp. 5237-...
	[16] A. R. Brusin, M. R. Zefreh, P. Poggiolini, S. Piciaccia, F. Forghieri, and A. Carena, "Machine learning for power profiles prediction in presence of inter-channel stimulated Raman scattering," in 2021 European Conference on Optical Communication ...
	[17] A. Anchal and E. Lichtman, "A Few Milliseconds-Fast SRS-Induced Loss and Tilt Compensation Algorithm for Dynamic C+ L-band Networks," in European Conference on Optical Communication (ECOC), 2022, pp. 1-4.
	[18] M. Raissi, P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," Journal of Computational Physics, vol. 378...
	[19] D. Wang, X. Jiang, Y. Song, M. Fu, Z. Zhang, X. Chen, and M. Zhang, "Applications of physics-informed neural network for optical fiber communications," IEEE Communications Magazine, vol. 60, no. 9, pp. 32-37, 2022, DOI: 10.1109/mcom.001.2100961.
	[20] Y. Song, D. Wang, Q. Fan, X. Jiang, X. Luo, and M. Zhang, "Physics-Informed Neural Operator for Fast and Scalable Optical Fiber Channel Modelling in Multi-Span Transmission," in 2022 European Conference on Optical Communication (ECOC), 2022, pp. ...
	[21] Y. Song, Y. Zhang, C. Zhang, J. Li, M. Zhang, and D. Wang, "PINN for Power Evolution Prediction and Raman Gain Spectrum Identification in C+ L-Band Transmission System," in Optical Fiber Communication Conference, 2023, p. Th1F. 5.
	[22] X. Jiang, D. Wang, X. Chen, and M. Zhang, "Physics-Informed Neural Network for Optical Fiber Parameter Estimation From the Nonlinear Schrödinger Equation," Journal of Lightwave Technology, vol. 40, no. 21, pp. 7095-7105, 2022, DOI: 10.1109/jlt.20...
	[23] D. Semrau, E. Sillekens, R. I. Killey, and P. Bayvel, "A Modulation Format Correction Formula for the Gaussian Noise Model in the Presence of Inter-Channel Stimulated Raman Scattering," Journal of Lightwave Technology, vol. 37, no. 19, pp. 5122-5...
	[24] S. Wang, H. Wang, and P. Perdikaris, "Learning the solution operator of parametric partial differential equations with physics-informed deeponets," Science advances, vol. 7, no. 40, p. eabi8605, 2021, DOI: 10.26226/morressier.612f6736bc9810372410...
	[25] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators," Nature Machine Intelligence, vol. 3, no. 3, pp. 218-229, 2021, DOI: 10.1038/s42256-021...

