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Abstract Quantum fluctuations fundamentally affect optical signal regeneration and detection. This
results in ultimate quantum limits on the performance of optical communication links and enables inno-
vative physical layer security solutions such as quantum key distribution. ©2023 The Author(s)

Introduction
The continuing efforts to improve the performance
of optical communication systems will ultimately
encounter the barrier of quantum fluctuations in-
herently present in optical signal processing and
detection. Quantum physics offers quantitative
characterisation of the resulting limitations, even
if conventional modulation and detection tech-
niques are replaced by more advanced strate-
gies enabled by emerging or future quantum
technologies. This paper examines the ultimate
Gordon-Holevo (GH) limit on the capacity of opti-
cal links,[1]–[4] including multispan configurations
with optical amplifiers,[5]–[8] as well as reviews
selected concepts of quantum key distribution
(QKD),[9]–[12] where quantum fluctuations enable
secure communication.

Channel model
In a canonical model shown in Fig. 1, an opti-
cal signal with average input power P and slot
rate (bandwidth) B undergoes attenuation char-
acterised by a power transmission factor τ fol-
lowed by addition of excess Gaussian noise with
a power spectral density (PSD) N . It is conve-
nient to quantify the input signal strength and the
noise strength with respective PSDs expressed in
photon numbers per unit time-bandwidth area:

n̄ = P/(Bhfc), nn = N /(hfc), (1)

where h = 6.626 · 10−34 J · Hz−1 is Planck’s con-
stant and fc is the signal carrier frequency. The
attainable information rate R reads R = B · C,

Fig. 1: Canonical channel model. The setup inside the box
realizes a QKD eavesdropping strategy using an entangled
twin-beam state (∞) and a receiver saturating the GH limit.

where C is the channel capacity per slot (spectral
efficiency). Conventional references for the chan-
nel capacity derived from the Shannon-Hartley
theorem[13] correspond to scenarios where infor-
mation is encoded respectively in one (S1) or two
(S2) field quadratures and read:

CS1 =
1
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)
. (3)

It has been assumed that information-carrying
quadratures are read out using coherent, shot-
noise-limited (SNL) detection which contributes
terms +1 to the denominators in (2) and (3). The
Shannon capacities for a loss-only channel with
no excess noise, nn = 0, are depicted in Fig. 2.

Gordon-Holevo capacity limit
From the quantum physics perspective, scenar-
ios leading to the Shannon limits (2) and (3) are
overly restrictive. In addition to optical fields with
a well defined complex amplitude, described in
quantum mechanics by so-called coherent states,
one may consider also input symbols prepared
in non-classical states, such as squeezed states
or photon number (Fock) states.[14] Furthermore,

Fig. 2: Capacities for a loss-only channel.



conventional detection of field intensity or quadra-
tures can be replaced by more elaborate re-
ceivers,[15] aiming e.g. at minimising the prob-
ability of error when discriminating the symbol
values,[16]–[20] or detecting jointly multiple sym-
bols.[21]–[23] Optimisation over all ensembles of
input symbols under the average power con-
straint and physically feasible detection strategies
yields the ultimate Gordon-Holevo (GH) capacity
limit[1]–[3]

CGH = g(τ n̄+ nn)− g(nn), (4)

where g(x) = (x + 1) log2(x + 1) − x log2 x. Be-
cause g(0) = 0, the expression g(τ n̄) gives the
GH limit of a loss-only channel, indicated in Fig. 2
by the edge of the shaded region. For large argu-
ments, x ≫ 1, the function g(x) admits the expan-
sion g(x) = log2(1 + x) + log2 e + O(x−1), which
implies that in the case of a loss-only channel with
a strong output signal one has

CGH ≈ CS2 + log2 e, τ n̄ ≫ 1, nn = 0, (5)

which gives the quantum advantage equal to 1 nat
≈ 1.44 bit of information per slot. In the special
case of a lossless and noiseless channel the GH
limit can be saturated by encoding information in
Fock states and using at the output photon num-
ber resolved detection that identifies unambigu-
ously the input state. As seen in Fig. 2, this strat-
egy no longer works for a lossy channel.[24]

When the excess noise is strong, nn ≫ 1, the
large-argument expansion of g(x) can be applied
to both terms in Eq. (4) which gives:

CGH ≈ CS2 ≈ log2

(
1 +

P

BN

)
, nn ≫ 1. (6)

In the second step the detection shot noise has
been neglected compared to the excess noise,
which yields the standard Shannon expression for
the capacity of a noisy Gaussian channel.

Under severe power limitations the photon
starved regime with τ n̄ ≪ 1 is reached. Taking
τ n̄ → 0 one obtains CGH ≈ τ n̄ log2(1 + n−1

n ). The
resulting information rate can be recast as

RGH ≈ τP

hfc
· log2

(
1 +

hfc
N

)
, τ n̄ → 0, (7)

where the first factor specifies the received pho-
ton flux, and the second factor is the GH limit on
the photon information efficiency (PIE). With van-
ishing excess noise, N → 0, the PIE can take in

Fig. 3: A multispan link with optical signal regeneration (a);
Optimized GH capacity limits for distributed amplification (b).

principle an arbitrarily high value.[25],[26] A generic
example of a scalable photon-efficient modulation
format is pulse position modulation (PPM).[27]

Amplified multispan links
Consider a link consisting of R+1 spans that con-
nect R regeneration nodes as shown in Fig. 3(a).
If the optical signal is regenerated at the ith node
using a phase-insensitive amplifier (PIA) with gain
Gi, at least Gi − 1 noise photons have to be
contributed by the amplification process.[28] When
PIAs operate at the quantum limit, this leads to
the following recursive relations for the channel
transmission τi and the excess noise nn,i up to
the point right after the ith node:[7]

τi = Gi exp(−αli)τi−1,

nn,i = Gi exp(−αli)nn,i−1 +Gi − 1. (8)

Here li is the length of the ith span and α is the
attenuation per unit length. A natural constraint
is that the combined signal and noise power does
not exceed the input value n̄ at any point of the
link, τin̄+ nn,i ≤ n̄.

Fig. 3(b) depicts the optimized GH limit on the
link capacity as a function of distance in the case
of distributed amplification, li → 0. Apart from
short distances, where the 1 nat quantum advan-
tage for a loss-only channel prevails over regen-
eration, the optimal strategy is to keep the sig-
nal amplified to the maximum value permitted by
the total power constraint for most of the distance.
For short span lengths, αli ≪ 1, and high pow-
ers, n̄ ≫ 1, the requirement to maintain the total
power implies the gain Gi ≈ 1 + αli(n̄− 1)/n̄. In-
serting this value into Eqs. (8) and taking the limit
of distributed amplification gives the solution over
the link distance L of the form: τ = exp(−αL/n̄),



nn = (1 − τ)n̄. As soon as the excess noise
contributed by amplification overwhelms the shot
noise, nn ≫ 1, it becomes sufficient to use the
Shannon limit (3), which after simplification yields

CPIA ≈ − log2
(
1− exp(−αL/n̄)

)
. (9)

It is seen that the decrease of capacity with dis-
tance is reduced by a factor 1/n̄.

An analogous analysis can be carried out[8] in
the case of a multispan link with phase-sensitive
amplifiers (PSAs).[29] For large distances the
nearly optimal strategy is to modulate one field
quadrature, subject it to amplification to bring the
combined signal and noise power back to the in-
put value, and coherently detect the information-
carrying quadrature. In the limit of distributed am-
plification the capacity is well approximated by

CPSA ≈ −1

2
log2

(
1− exp[−αL/(4n̄)]

)
. (10)

Although the capacity is reduced by an overall
factor 1/2, its decrease with distance is slower by
an additional factor 4 in the exponent compared to
Eq. (9) which prevails for very long links as seen
in Fig. 3.

Quantum key distribution
The purpose of quantum key distribution
(QKD)[10]–[12] is to generate a secure key be-
tween two parties: the sender (Alice) and the
recipient (Bob), that will be unknown to an adver-
sary (Eve) that can access the channel or even
replace the actual physical channel with an elab-
orate eavesdropping mechanism. The key can be
distilled from partly correlated random variables
in possession of Alice and Bob, provided that Eve
has less knowledge about Alice’s variable (direct
reconciliation) or Bob’s variable (reverse recon-
ciliation) than the mutual knowledge between
Alice and Bob. Asymptotically the knowledge is
quantified in terms of mutual information I(·; ·).

An exemplary QKD protocol is Alice modu-
lating the complex field amplitude composed of
two conjugate quadratures according to a phase-
invariant Gaussian distribution CN (0, n̄). For a
loss-only channel and conventional SNL detec-
tion of both quadratures by Bob, their mutual in-
formation reads I(A;B) = log2(1+τ n̄). If Eve has
access to the entire fraction 1 − τ of the signal
that is not received by Bob, her maximum knowl-
edge about Alice’s variable is given by the GH
limit, I(A;E) = g

(
(1 − τ)n̄

)
. Consequently, the

channel transmission threshold to distill a secure

Fig. 4: Secure key as a function of channel transmission.

key by Alice and Bob exceeds 50%. However,
Eve has less knowledge about Bob’s outcomes,
I(B;E) = g

(
(1−τ)n̄

)
−g

(
(1−τ)n̄/(1+τ n̄)

)
, which

enables key generation below that threshold in
the reverse reconciliation scenario.[9] For strong
input signal, n̄ ≫ 1, and high attenuation, τ ≪ 1,
assuming perfect reconciliation the attainable key
scales linearly with channel transmission:

K = I(A;B)− I(B;E) ≈ τ

2
log2 e. (11)

In the most pessimistic scenario, the physical
channel is replaced by Eve with a quantum pro-
cessor, as illustrated with Fig. 1, and the se-
curity analysis assumes the optimal eavesdrop-
ping strategy compatible with the effective chan-
nel characteristics observed by Alice and Bob. As
shown in Fig. 4, the result for passive eavesdrop-
ping on a loss-only channel holds for transmis-
sions down to a cut-off value that depends on the
excess noise contribution.

Conclusions
Quantum physics indicates multifold ways to
boost the performance of optical communication
systems and equip them with extra functionalities,
such as physical layer security. These enhance-
ments depend essentially on reaching quantum-
limited operation of optoelectronic components
and implementing advanced signal processing
strategies, especially in the optical domain.
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