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Abstract We present an AI engine built on OpenFaas utilizing distributed databases and network
telemetry to monitor and manage multiple ML models. Two use cases of ML applications in optical
networks are demonstrated over the field-trial testbed, showcasing the feasibility and scalability of the
proposed scheme.©2023 The Author(s)

Introduction

Recently optical networks have seen significant
advancements with the integration of machine
learning (ML) technologies for various applica-
tions such as fault management[1], anomaly de-
tection[2], quality of transmission (QoT) predic-
tion[3], and network traffic prediction[4]. These
implementations and demonstrations have gen-
erated considerable interest and promise for fu-
ture deployments. However, deploying large num-
bers of ML models in practical scenarios remains
a significant challenge. Especially, efficient and
scalable monitoring and data collection solutions
with real-time telemetry are essential for all ma-
chine learning applications. Deployment of multi-
ple ML models also requires extensive ML model
management including training, deployment, in-
ference, and monitoring.

To address this challenge, Machine-Learning-
as-a-Service (MLaaS) has been proposed as a
framework to allow optical network automation
entities to request and quickly access trained ML
models with as little human intervention as pos-
sible[5]. However, the current work didn’t address
ML model management and deployment in opti-
cal networks and didn’t combine it with real-time
telemetry to provide a life-cycle optical monitor-
ing platform. In addition, optical network teleme-
try has been developed supporting both perfor-
mance monitoring and network state reporting,
with monitoring and telemetry protocols, such as
gRPC, gNMI, or websockets[6]. As far as authors
know, the practical demonstration with telemetry
and AI engine has not been reported yet.

This paper presents the implementation and
demonstration of an AI engine utilizing distributed
databases and network telemetry over a field-
trial testbed. The AI engine, built on OpenFaas,
is capable of monitoring and managing multiple

ML models for different use cases. Time series
databases based on InfluxDB are implemented
over the UK National Dark Fiber Facility (NDFF) to
store collected network status through Flux data
streaming. The paper demonstrates the applica-
tion of the AI engine in two use cases: (1) artificial
neural network (ANN)-based QoT predictions for
optical signals transversing two fibre links, and (2)
link anomaly detection with long-short term mem-
ory (LSTM) algorithms. The demonstrated so-
lution integrates optical network telemetry, time-
series databases, AI engine with ML applications
to provide extra network functions in optical net-
works. The field-trial demonstration paves a pos-
sible way for the practical deployment of ML ap-
plications in optical networks.

Architecture of AI Engine in Optical Networks
To fully leverage the potential of ML applications
in optical networks, the entire ML life-cycle[7], in-
volving data processing, ML model training and
deployment, should be considered. In fact, de-
ployments of ML models require the integration of
the database and network controller to combine
the models with the network to realize their func-
tions. Figure 1(a) illustrates the proposed network
architecture with real-time telemetry and an AI en-
gine, where three essential functions need to be
in place:

1) AI Engine: it manages algorithms, models
and frameworks used to develop and train ML
models. The AI engine performs critical ML tasks,
such as training and inference, and facilitates the
deployment of ML models in optical networks. It
must be able to handle large amounts of data and
perform complex computations to generate accu-
rate predictions. The AI engine can be deployed
on a dedicated server or cloud infrastructure. It
can also be deployed on network devices such
as routers or switches to enable real-time pro-
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Fig. 1: The schematic view of the proposed network telemetry with an AI engine

cessing and decision-making. In the demonstra-
tion of the proposed network architecture, Open-
Faas is selected to develop the AI engine. As
a serverless computing platform, OpenFaas pro-
vides a cloud-native environment for deploying an
environment for ML model deployments, enabling
real-time prediction and decision-making in opti-
cal networks.

2) Telemetry: it is responsible for collecting,
processing, and aggregating the data from the
physical layer and making it available to the AI
engine. Telemetry data in optical networks can
be obtained from various sources, such as op-
tical performance monitoring, optical power lev-
els, and optical signal-to-noise ratio (OSNR) val-
ues. Telemetry protocols such as gRPC, gNMI,
or websockets can be used to facilitate the col-
lection and transmission of telemetry data in op-
tical networks. In our demonstration, time-series
databases are implemented based on InfluxDB in
each node to store the collected data from the
physical layer through InfluxDBClient and Flux,
which is a query language designed specifically
for working with time-series data in InfluxData.
Through the integration with the visualization tool
Grafana, time-series databases provide operators
with real-time insights into network performance
shown in Figure 3(a). The board shows real-
time BER values received by one of the voyager
transponders.

3) SDN controller: it is responsible for net-
work control and management, and plays a crit-
ical role in the deployment of ML models in opti-
cal networks. The SDN controller can communi-
cate with network devices using various protocols
such as OpenFlow, NETCONF, or REST APIs to
configure the network and make intelligent de-
cisions for network optimization and fault detec-
tion according to the prediction results provided

by the AI engine. Experimentally, an SDN con-
troller is developed to control all the devices such
as Wavelength selective switching (WSSs), Voy-
ager Transponders, and facilities through REST-
APIs and HTTP POST.

With distributed time-series databases and the
SDN controller, the AI engine is applied to pre-
dict network traffic and detect network anomalies.
ML models inside the AI engine are pre-trained
offline with part of previously collected data, and
deployed on OpenFaas. With ML models de-
ployed, the AI engine automatically fetches the
data from InfluxDB to make real-time predictions
with the results sent to the SDN controller. Then,
the SDN controller will do link configuration ac-
cording to the prediction results. As shown in
Figure 1(b), when the link is reconfigured or the
network topology is changed, the AI engine will
fetch the latest data, retrain the models and make
re-deployments. This approach ensures that the
ML models remain relevant and effective in man-
aging the network, even as the network topology
and traffic patterns change over time. By updating
the models, the AI engine can adapt to new con-
ditions and improve its predictions, allowing the
network to be more efficiently managed.

Use cases and results
To validate the feasibility of the proposed architec-
ture, we demonstrated it in the field-trial testbed
over part of NDFF. Figure 2(a) depicts the link
setup of two use cases in the field-trial demon-
stration.

First, we demonstrated the proposed system
in LSTM-based link anomaly detection[8]. From
node A to node B, 4 equalized 50GHz-spaced
32Gbaud PM-16QAM signals are generated by
4 Voyager Transponders and launched into the
493km NDFF link. An LSTM model is deployed
in the AI engine, reading the previous data stored
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Fig. 3: Results of field-trial demonstration

in InfluxDB to make short-term QoT predictions.
As shown in Figure 2(b), the proposed architec-
ture has a fast response to internal messaging. In
this case, it takes a short time for Influxdb to col-
lect data from the testbed and for the AI engine
to read data from the database, with the time cost
of 1.59s and 0.02s respectively. Generally, the
time to write and query data in InfluxDB is within
milliseconds, mainly depending on the amount of
data, the writing and querying method. The time
of AI inference is less than 1s. Due to the factors
such as the size and complexity of the function,
the load on the OpenFaaS cluster and network la-
tency, it takes a few seconds to invoke OpenFaaS
and run the function. The response time from
data acquisition to model prediction within several
seconds proves that the system can provide real-
time network performance monitoring and predic-
tion. However, it will take a bit of time for the
completion of the link configuration since devices
need a certain amount of time to respond to com-
mands sent by the SDN controller. For instance,
it will take around 180s for the modulation format
configuration of Facebook Voyager transponders
and ADVA FSP3000 Teraflex devices we used,
and around 5s for the power configuration.

In addition, the proposed system is demon-
strated on cascaded ANN-based link-penalty
models for QoT prediction[9]. 12 optical chan-
nels with 50GHz-spaced 32Gbaud PM-16QAM
signals are generated from two Facebook Voy-

ager devices each with four transponders and two
ADVA FSP3000 Teraflex platforms, which support
four transponders in total. They are aggregated
into the same fibre via a wavelength selective
switch (WSS) from node A to node C through two
NDFF sections of 493km. In node B, a ROADM
is deployed to switch, add and drop optical chan-
nels. For each link, it has an ANN model deployed
in the AI engine to predict the Q-factor of the cur-
rent link, which requires the AI engine to be able
to support the deployment of multiple models si-
multaneously. As shown in Figure 3(b), quick AI
inference with a time of 99ms and high prediction
accuracy demonstrates the robustness and scal-
ability of the designed AI engine.

Conclusion
We have successfully demonstrated the deploy-
ment of an AI engine with ML applications, inte-
grating optical network telemetry and time-series
databases over a field-trial testbed. . The pro-
posed architecture offers great advantages for the
practical deployment of ML applications in optical
networks.
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