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Abstract Long-haul transmission of 40-Gbaud PDM-QPSK signals over 7280-km coupled 4-core fibers 
is demonstrated with entire 5/4× oversampling DSP including a frequency-domain adaptive 8×8 MIMO 
filter. The 5/4× oversampling DSP reduces the computational complexity by 34% compared with the 
conventional 2× oversampling DSP with negligible penalty. ©2023 The Author(s) 

Introduction 
Space-division multiplexed (SDM) transmission 
is an approach to overcome the capacity limit of 
long-haul transmission over conventional single-
mode fibers (SMFs) [1]. SDM systems with 
coupled spatial modes provide a high density of 
channels while coupling between them is allowed. 
Coupled multi-core fibers (CMCFs) enable low 
propagation loss and low spatial mode dispersion 
(SMD) [2], and thus long-haul transmissions have 
been demonstrated with them [3-6].  

SDM systems with coupled modes require an 
adaptive multi-input multi-output (MIMO) 
processing on the receiver side to compensate 
for time-varying spatial coupling and SMD [7], 
hereinafter referred to as mode demultiplexing. 
The MIMO filter should have the dimension 
corresponding to the square of the number of 
coupled spatial/polarization modes, and the filter 
length should cover the temporal signal spread 
due to SMD, which is currently much larger than 
the polarization mode dispersion of an SMF [2]. 
Thus, a large adaptive MIMO filter needs to be 
efficiently implemented for practical SDM 
systems with coupled channels [5, 8, 9]. 

One approach to efficiently implement a filter 
with large temporal spread is a frequency-domain 
(FD) filter [10, 11], which is widely used for static 
chromatic dispersion compensation (CDC) in 
SMF transmission systems [12] and is also 
investigated for adaptive mode demultiplexing in 
SDM transmission systems [13-15]. Another 
approach is to reduce the sampling rate at which 
a filter operates below conventional 2× 
oversampling, e.g., fractional 1.5× oversampling, 
which has been investigated in SMF transmission 
with a high symbol rate [16-20]. We proposed a 
FD adaptive filter with fractional oversampling 
controlled by stochastic gradient descent (SGD) 
with back propagation. We evaluated it in long-
haul transmission over coupled four-core fibers 
(C4CFs) [21]. In this previous study, we adopted 
CDC, matched filtering (MF), and sampling timing 

offset alignment with the timing error [22] at 2× 
oversampling before fractional M/L× 
oversampling FD adaptive MIMO filter for mode 
demultiplexing to focus on it. If the entire DSP 
including CDC/MF and the MIMO filter operates 
at M/L× oversampling, the computational 
complexity will be further reduced. This possibility 
has been investigated in SMF transmission [19]. 
However, the performance penalty when applied 
to CMCF transmission, in which temporal spread 
due to SMD is more severe, is not apparent. 

In this study, we demonstrated a long-haul 
WDM/SDM transmission of 40-Gbaud PDM-
QPSK signals over C4CFs with entire 5/4× 
oversampling DSP including CDC/MF and the FD 
adaptive MIMO filter for mode demultiplexing. 
Error free transmission after forward error 
correction (FEC) was achieved up to 7280 km. 
With an unconstrained FD MIMO filter [8], the 
entire 5/4× oversampling DSP reduces required 
complex-valued multiplications by 34% 
compared with the conventional 2× oversampling 
DSP with negligible performance penalty.  

Entire fractional oversampling DSP for CMCF 
transmission 

Figure 1 shows the fractional M/L× 
oversampling FD adaptive MIMO filter with the 
overlap-save method [21]. The MIMO filter 
operates in the FD M/L× oversampling, where M 
and L are integers. Its outputs are converted to 
1× sampling by L× upsampling, decimation 

 
Fig. 1: Fractional M/L× oversampling frequency-domain 

adaptive MIMO filter with overlap-save method. 
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filtering, and 1/M× downsampling in the FD. 
Carrier recovery (CR) is performed on the signals 
converted to the time-domain (TD) 1× sampling. 
The coefficients of the FD MIMO filter are 
controlled by SGD and gradient calculation with 
back propagation through the sampling rate 
conversion to minimize the least-mean square 
(LMS) loss consisting of an error between the 
output signals in the TD 1× sampling and a 
training (or decision-directed) symbols d. A 
phase-locked loop (PLL) is used to control the 
phase rotation of CR.  

We consider here the case in which the 
sampling rate of an analog-to-digital converter 
(ADC) is M/L× oversampling and the entire DSP 
including CDC/MF before the FD MIMO filter 
operates at M/L× oversampling, as shown in Fig. 
2. After the M/L× oversampling signals acquired 
by the ADC after coherent reception are 
normalized, frame synchronization to use the 
data-aided algorithm for the FD adaptive MIMO 
filter is performed together with frequency offset 
compensation [21]. Then, CDC and MF operating 
at M/L× oversampling are performed. CDC/MF 
are assumed to be executed by one static FD 
filter with overlap-save. The signals after 
CDC/MF are the inputs of the M/L× oversampling 
FD MIMO filter. In this DSP architecture, 
sampling timing alignment [22], which was used 
in our previous study, is simply omitted. It can be 
recovered by an appropriate adaptive filter [23].  

The computational complexity of the entire 
fractional M/L× oversampling DSP is estimated in 
terms of required complex-valued multiplications. 
We have estimated the computational complexity 
of the fractional M/L× oversampling FD adaptive 
MIMO filter [21]. That of the static FD filters for 
CDC/MF operating at M/L× oversampling can be 
estimated similarly. However, the required filter 
lengths, i.e., overlap sizes of FD filters, for 
CDC/MF and mode demultiplexing are usually 
different in CMCF transmission. We consider a 
long-haul C4CF transmission, and we set the 
filter lengths for CDC/MF and mode 
demultiplexing to 2048 and 256 symbols, 
respectively. We set M/L = 5/4 as used later.  

Figure 3 shows the estimation of required 
complex-valued multiplications per symbol. We 

compared three DSP architectures; (i) both 
CDC/MF and the FD adaptive MIMO filter operate 
at 2× oversampling that corresponds to a 
conventional DSP (Conv. 2×); (ii) CDC/MF 
operates at 2× oversampling and the 5/4× 
oversampling FD adaptive MIMO filter is used (2× 
CDC/MF + 5/4× MIMO); and (iii) the entire DSP 
including CD/MF and the FD adaptive MIMO filter 
operates at 5/4× oversampling (5/4× entire). With 
a constraint to avoid the penalty due to assuming 
the periodicity of a signal block in the FD adaptive 
MIMO filter [11], 5/4× entire architecture reduces 
multiplications by 35% from Conv. 2× and by 7% 
from 2× CDC/MF + 5/4× MIMO. It is suggested 
that this constraint can be omitted with a small 
performance penalty for CMCF transmission [14]. 
In this unconstrained case, 5/4× entire reduces 
multiplications by 34% from Conv. 2× and by 18% 
from 2× CDC/MF + 5/4× MIMO.  

Transmission experiment 
A long-haul WDM/SDM transmission of 40-
Gbaud PDM-QPSK signals over C4CFs was 
demonstrated with a 50 GS/s ADC and the entire 
5/4× oversampling DSP. The experimental setup 
is shown in Fig. 4, which is similar to our previous 
one [21] except for using 40-Gbaud signals.  

The 40-Gbaud PDM-QPSK signal at 193.3 
THz for evaluation was generated with a 92-GS/s 
digital-to-analog converter (DAC). The 
transmitted data consisted of FEC frames of the 
low-density parity-check for DVB-S2 with a frame 
length of 64,800 and a code rate of 0.8 with 
random bits in the payload. Root-raised cosine 
filtering with a roll-off factor of 0.1 was used. The 
remaining 15 channels from 192.90 to 193.65 
THz in a 50-GHz grid were generated similarly 
with a 64-GS/s DAC. After channel power 
equalization by a wavelength selective switch 
(WSS) and low-speed polarization scrambling 
(PS), SDM signals were emulated by dividing 
WDM signals into four and decorrelating them.  

The transmission line was a recirculating loop 
consisting of two spans of 52-km C4CF with 
parallel EDFAs, and WSSs for gain/loss 
equalization for WDM channels. The averaged 
propagation loss, effective core area, and SMD 

 
Fig. 2: DSP operating entirely at fractional M/L× 

oversampling for CMCF transmission. 
 

Fig. 3: Required complex-valued multiplications per symbol. 



  

of C4CFs were 0.165 dB/km, 112 μm2, and 6.9 
ps/√km. The span input optical power was set to 
+1 dBm/ch/core. The averaged optical signal-to-
noise ratio was 36.5 dB/0.1 nm after two-span 
transmission.  

After transmission, the signals under 
evaluation were demultiplexed by optical 
bandpass filters (OBPFs). The outputs of 
coherent receivers were sampled by a 16-
channel 50-GS/s ADC. Received waveforms 
were acquired five times for each condition. 
Offline DSP with the entire 5/4× oversampling 
configuration shown in Fig. 2 was performed. The 
coefficients of the FD MIMO filter are controlled 
with the data-aided LMS loss for pre-
convergence first and then switched to the 
decision-directed LMS. The FD adaptive MIMO 
filter was unconstrained.  

Figure 5 shows the pre- and post-FEC BER 
after transmission with the entire 5/4× 
oversampling DSP. BERs for five waveform 
acquisitions averaged over eight spatial and 
polarization modes were plotted at each distance. 
Error-free transmission after FEC was achieved 
up to 7280 km. Five waveform acquisitions 
resulted in similar pre-FEC BERs, which 
indicated that the FD adaptive MIMO filter well 
compensated for the sampling timing offsets.  

Finally, the impact of the oversampling ratio 
M/L on the performance of the entire fractional 
oversampling DSP was evaluated in detail. We 
compared three configurations; (a) the signals 
were resampled to M/L× oversampling after 
frame synchronization. CDC/MF and the FD 
adaptive MIMO filter operated all at M/L× 
oversampling (Fractional entire); (b) the signals 
were resampled to 2× oversampling after frame 

synchronization. CDC operated at 2× 
oversampling. Then the signals were resampled 
to M/L× oversampling. MF and the FD adaptive 
MIMO filter operated all at M/L× oversampling (2× 
CDC + fractional MIMO); and (c) CDC and MF 
was interchanged in case (b) (2× MF + fractional 
MIMO). In all cases, the filter lengths were fixed, 
i.e., 2048 symbols for CDC/MF and 256 symbols 
for mode demultiplexing.  

Figure 6 shows the pre-FEC BER after 5200-
km transmission with the three configurations 
while changing the oversampling ratio. Results of 
five acquisitions were averaged. A small penalty 
down to 1.1× oversampling was observed with 2× 
MF + fractional MIMO. Fractional entire and 2× 
CDC + fractional MIMO showed negligible 
penalty down to 1.25× oversampling.  

Conclusions 
We demonstrated a long-haul WDM/SDM 
transmission of 40-Gbaud PDM-QPSK signals 
over 7280-km C4CFs with the entire 5/4× 
oversampling DSP including CDC/MF and the FD 
adaptive MIMO filter for mode demultiplexing. 
The entire 5/4× oversampling DSP reduces 
required complex-valued multiplications by 34% 
compared with the conventional 2× oversampling 
DSP with negligible performance penalty.  
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Fig. 4: Experimental setup for WDM/SDM transmission of 40-Gbaud PDM-QPSK signals over C4CFs with entire 5/4× 

oversampling DSP. AOM: acousto-optic modulator, FO: fanout, ATT: optical attenuator, ODL optical delay line. 

 
Fig. 6: Dependence of pre-FEC BER on oversampling ratio 

after 5200-km transmission. 

 
Fig. 5: Pre- and post-FEC BERs after transmission. 
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