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Abstract We propose a fiber-longitudinal monitoring method that generalizes the correlation method 
(CM) and least squares (LS). The proposed method balances the advantages of CM and LS, achieving 
both high noise robustness and power sensitivity. The results are experimentally validated using 800G 
signals from a DSP-ASIC.  ©2023 The Author(s) 

Introduction 
Monitoring physical parameters of optical links is 
crucial for minimizing redundant operational 
margins and detecting soft network failures. In 
particular, signal power in transmission links is a 
dominant factor in determining the generalized 
signal-to-noise ratio and thus should be 
monitored to achieve the maximum capacity for a 
given link. 

To address this need, fiber-longitudinal power 
profile estimation (PPE) has been developed [1-
5]. PPE estimates signal power evolution in the 
signal-propagation direction by extracting fiber-
nonlinearity from received signals. It also offers 
several advantages, such as: (i) end-to-end 
characterization of a multi-span link at a single 
coherent receiver, (ii) the capability to locate loss 
and gain anomalies, (iii) no need for additional 
probing light and optical configuration, and (iv) 
wide applications such as locating excessive 
polarization dependent loss [6] and filter 
anomalies [2, 3]. 

However, in existing PPE methods, either 
power sensitivity or noise robustness is sacrificed. 
Correlation methods (CMs) [1,4,7] provide stable 
performance under noise and distortions; 
however, their sensitivity to power-related events 
(e.g., loss anomalies) and spatial resolution are 
limited due to the convolution effect related to 
chromatic dispersion (CD) [7]. In contrast, least-
squares methods (LSs) [2,3,5] achieve high 
sensitivity and spatial resolution but suffer from 
noise enhancement due to the deconvolution (or 
more generally, the inverse matrix) operation 
[6,7]. Although it was discussed in [8] that the 
sensitivity and spatial resolution of CMs can also 
be enhanced by applying deconvolution, this 
operation is a special case of the LS algorithm [7], 
which means the noise enhancement is also 
accompanied. 

In this paper, we propose a fiber-longitudinal 
PPE method that generalizes both the CM and 
LS by using the Tikhonov regularization [9]. This 
method achieves both high sensitivity and high 
noise robustness, balancing the strength of CM 

and LS. We first show that by setting a 
regularization parameter 𝜆 → ∞ , the proposed 
method converges to CM, whereas it approaches 
LS when 𝜆 → 0. The results are experimentally 
validated using an 800G signal from a transceiver 
plug-in unit (PIU) with a DSP-ASIC, 
demonstrating that the proposed method 
enhances the feasibility of PPE even in noisy 
environments with practical transceivers. 

Conventional PPEs: Correlation-based 
Method (CM) and Least-Squares-based 
Method (LS) 
First, let us revisit a CM in [4,7] and a LS in [5,7], 
and then introduce the proposed method in 
comparison with them. All the PPE method 
estimates an averaged nonlinear phase rotation 
𝛾ᇱ(𝑧) = 𝛾𝑃(𝑧) , where 𝛾  and 𝑃(𝑧)  denote the 
nonlinear constant of a fiber and the signal power 
at position 𝑧. One can estimate the power 𝑃(𝑧), 
assuming 𝛾 is known. 

In the CM, power profiles 𝛾ᇱ(𝑧) are estimated 
by correlating a received signal 𝐄[𝐿]  with a 
reference signal called a nonlinear template [4], 
where 𝐿  is the link distance. To obtain the 
reference signal, CD 𝐷෡଴௭ೖ  from 0 to 𝑧௞  km (𝑘 =

0,…𝐾 − 1) is first applied to the transmitted signal 
𝐄[0]  as 𝐷෡଴௭ೖ𝐄[0] . Subsequently, a nonlinear 
operation 𝑁෡ = −𝑗|∙|ଶ(∙) , and residual CD are 
applied to obtain the reference signal 𝐄௞

௥௘௙[𝐿] as 

𝐄௞
௥௘௙[𝐿] = 𝐷෡௭ೖ௅𝑁

෡𝐷෡଴௭ೖ𝐄[0]. (1) 

Then the signal power at position 𝑧௞ is estimated 
by correlating received signals with 𝐄௞

௥௘௙[𝐿] as 

𝛾஼ெ,௞
ᇱ෣ = Reቈ𝐄௞

௥௘௙ற[𝐿]𝐄[𝐿]቉, (2) 

where Re[∙] is a real part and (∙)ற is the Hermitian 
transpose. By performing (2) for all the positions 
𝑧௞, power profiles are reconstructed as 

𝜸ᇱ෡
େ୑

= Re ቂ𝐆ற𝐄[𝐿]ቃ, (3) 

where  

𝐆 = ቂ𝐄଴
௥௘௙[𝐿], …𝐄௞

௥௘௙[𝐿], … 𝐄௄ିଵ
௥௘௙ [𝐿]ቃ. (4) 



  

According to [7], (3) can be transformed under 
assumptions that the transmitted signals are 
1. modelled by the first order regular 

perturbation (RP1) such that 𝐄[𝐿] = 𝐄଴[𝐿] +
𝐄ଵ[𝐿], where 𝐄଴[𝐿] and 𝐄ଵ[𝐿] are linear and t 
nonlinear terms, respectively [10]. 

2. a stationary circular complex Gaussian 
process. 

Then the terms related to 𝐄଴[𝐿] vanish and (3) 
becomes 

𝜸ᇱ෡
େ୑

= Re ቂ𝐆ற𝐄𝟏[𝐿]ቃ. (5) 

This is the power profile of the CM [4,7]. The 
purple line in Fig. 1 shows a simulation result of 
(5). In the simulation, a PCS64QAM 128-GBd 
signal with a Nyquist roll-off of 0.1 was used and 
transmission link was emulated by the split-step 
method with 𝛼 = 0.20 dB/km, 𝛽ଶ = -21.8 ps2/km, 
𝛾 = 1.3 W-1km-1, and the step size ∆𝑧 = 50 m. No 
noise and distortion were added. PPE was 
performed with a spatial granularity of 0.5 km. 
Note that the vertical axis is the absolute value of 
power, assuming the nonlinear constant is known. 
The CM successfully estimates power 
tendencies but offers a sub-optimal solution in 
that its spatial resolution and accuracy are limited, 
and it does not estimate the absolute power. 
Additionally, the sensitivity to a 2-dB loss event 
inserted in the second span is also limited. It was 
shown in [7] that these limitations of CM arise 
from the fact that the estimated power profile of 
CM can be understood as a convolution between 
the true power profile and a smoothing function 
related to CD. 

In the LS, power profiles are obtained by 
solving the following least squares problems: 

𝜸′෡
୐ୗ
= argmin

𝜸′
𝔼[‖𝐄[𝐿] − 𝐄௥௘௙[𝐿]‖ଶ], (6) 

where 𝐄௥௘௙[𝐿]  is a complete emulation of the 
received signals, obtained by either the full SSM [2], 
Volterra [3], or RP1 [5]. According to [5], (6) can be 
solved simply under the RP1 assumption as: 

𝜸ᇱ෡
୐ୗ

= (Re[𝐆ற𝐆])ିଵRe ቂ𝐆ற𝐄𝟏[𝐿]ቃ (7) 

This is the power profile of the LS [5,7]. 
Interestingly, (7) implies that power profiles of LS 
are that of CM (5) applied by the inverse matrix 
(Re[𝐆ற𝐆])ିଵ. It was noted in [7] that this inverse 
matrix is a general expression for deconvolving 
the smoothing function accompanied in CM. The 
yellow line in Fig. 1 shows an example of (7). The 
LS successfully estimates the absolute power, 
and its spatial resolution and accuracy are high 
under noise-less and distortion-less conditions. 
Moreover, the inserted 2-dB loss is clearly 
detected, demonstrating the LS’s high sensitivity 
to loss events. However, as implied in (7), the 
inverse matrix (Re[𝐆ற𝐆])ିଵ  (or deconvolution) 
enhances noise and distortions in received 
signals (or in 𝐄𝟏[𝐿],) which means that LSs are 
more vulnerable to noise than CMs. This point is 
clearly observed in the experimental section. 

Generalized PPE 
Our proposal is the following algorithm: 

𝜸ᇱ෡ = (Re[𝐆ற𝐆] + 𝜆𝐈)ିଵRe ቂ𝐆ற𝐄𝟏[𝐿]ቃ, (8) 

where 𝜆  is a regularization parameter. This 
method corresponds to solving (6) using the 
Tikhonov regularization [9]. When 𝜆 = 0 , (8) 
becomes the LS (7). In contrast, it also converges 
to the CM (5) under 𝜆 → ∞, since the second term 
𝜆𝐈 in the inverse matrix becomes dominant and 
Re[𝐆ற𝐆] + 𝜆𝐈 approaches to the identity matrix. 
This is illustrated in Fig. 1. By adjusting 𝜆, the 
proposed method (red and blue) can balance 
between the CM and LS. When 𝜆 = 10ିସ (red), 
the proposed method is close to the LS, showing 
good estimation of the true power and high 
sensitivity to an inserted 2-dB loss. By increasing 
𝜆  (blue), it gradually approaches the CM, 
deviating from true power and losing the 
sensitivity to the loss. In this way, the proposed 
method is a generalized method of the CM and 
LS. The impact of noise and distortion on these 

 
Fig. 1. Simulation results of power profiles estimated by proposed method (red and blue), LS(yellow), and CM(purple). 

Proposed method approaches LS under 𝜆 = 0 and CM under 𝜆 → ∞. 

Least-Squares-based method (LS) [2,3,5,7] (Eq. (7))

Proposed method (Eq. (8))

Correlation-based method (CM) [4,7] (Eq. (5))
✗ Low sensitivity and spatial resolution

✓ Robust to noise
✗ Only relative power estimated

✓ High sensitivity and spatial resolution

✗ Noise enhancement
✓ Absolute power (dBm) estimated*

*Assuming fiber nonlinear constants are known
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PPE methods is investigated in the following 
section. 

Experiment 
Fig. 2 shows the experimental setup. An 800G 
signal was generated from a transceiver PIU with 
a 5-nm CMOS DSP ASIC. After OE conversion 
with a high-baudrate coherent driver modulator 
(HB-CDM), the signal was launched into a 150-
km 3-span standard single mode fiber (SSMF) 
link with an average fiber loss coefficient of 0.184 
dB/km. A center frequency of the signal was 
1547.72 nm and the fiber launch power was set 
to 8 dBm. An intentional 2.5-dB attenuator was 
inserted at 70 km. The signal was then captured 
by an intradyne coherent receiver (ICR) and 
another DSP-ASIC. The captured waveform was 
processed offline.  CD, frequency offset, carrier 
phase, and polarization rotation were first 
compensated, and the compensated CD was 
then reloaded to the signal to obtain 𝐄[𝐿]. Then 
PPE was performed using Eq. (8). The obtained 
power profiles were averaged 20 times. 

Fig. 3(a) shows the experimental results of 
PPEs using CM, LS, and the proposed method. 
Although the LS fits the true powers well, it shows 
noisy profiles, which originates from the 
deconvolution effect due to the inverse matrix in 
Eq. (7). The CM is more stable than the LS but 
does not estimate the true power, and its 
sensitivity to the loss event is limited. The 
proposed method at 𝜆 = 2 × 10-4 (red) achieves 
good noise suppression while maintaining 
agreement with the true power. By increasing 𝜆 
(e.g., 𝜆 = 1 × 10-4 with blue line,) the power profile 
becomes less noisy but it gradually deviates from 
the true power profile and loses the sensitivity, 
implying it approaches that of CM. Thus, there is 
an optimum 𝜆, which best balances the trade-off 
between noise robustness and sensitivity as well 
as the true power estimation. 

To evaluate the sensitivity to the loss event, 
we subtracted tilts (i.e., −𝛼௘௦௧𝑧) from the estimated 
power profiles, as shown in Fig. 3(b). 𝛼௘௦௧ for each 
profile is estimated from a stable area ranging 
from 55 to 65 km. The LS tracks the true loss 
(OTDR) but shows noisy profiles, while CM 
shows less sensitivity to the loss anomalies. The 
proposed method (red) suppresses the noisy 
characteristic of LS well while maintaining the 
loss sensitivity and estimating the true value of 
the inserted loss. 

Conclusions 
We proposed and demonstrated a fiber-
longitudinal PPE method that generalizes the CM 
and LS by using the Tikhonov regularization. The 
proposed method converges to CM under 𝜆 → ∞, 
while it approaches LS under 𝜆 → 0. By adjusting 
regularization parameter 𝜆, the proposed method 
achieves both high noise robustness and 
sensitivity to the loss event. This method 
enhances the performance of PPE in practical 
environments with noise and distortions. 
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Fig. 2. Experimental setup and DSP function blocks 

 
Fig. 3. (a) Experimental results of power profile 

estimation. (b) Loss anomaly indication by subtracting 

tilt (−𝛼௘௦௧𝑧) from power profiles in (a) 
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