
 
 

Experimental Investigation of Physics- and ML-based QoT 
Estimation for WDM Systems 

Md Saifuddin Faruk (1,*), Mariane Mansour(1), Charles Laperle(2), Maurice O'Sullivan (2), Seb J. Savory(1) 

 
(1) Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 

0FA, UK, *msf35@cam.ac.uk 
(2) Ciena Corporation, Ottawa, Ontario K2K 0L1, Canada 

 

Abstract With a seven-channel WDM transmission over 1000 km, we experimentally study the data-

driven physics- and machine learning (ML)-based SNR estimation techniques. While the ML-based 

approach provides good estimation accuracy, the physics-based method performs close to it with  more 

explainability and less training data requirements. ©2023 The Author(s) 

Introduction 

In a WDM system, Quality of Transmission (QoT) 

estimation is an important and challenging task 

as the performance of a channel depends on the 

power of other neighbouring channels. Recently, 

accurate QoT estimation, where signal-to-noise 

ratio (SNR) is estimated as a QoT metric, is under 

intense investigation to enable a low-margin 

network. 

Both the analytical approach as well as 

machine learning (ML) based approach has been 

investigated for QoT estimation. For analytical 

approaches, usually, the Gaussian noise (GN) 

model is used [1] whereas various ML 

approaches such as neural network (NN), 

support vector machine (SVM), K-nearest 

neighbour (KNN), random forest (RF) and so on 

[2-4] has been demonstrated. The analytical 

model suffers from parameter uncertainty in a 

real system whereas data-driven ML techniques 

rely on large datasets and provides less 

explainability. 

In this paper, two key approaches are 

considered for SNR estimation. The first one is 

the physics-based model, which can be referred 

to as the ‘white box’ model, where the unknown 

parameters are extracted from experimental 

measurement data. The second approach is the 

‘black box’ ML-based approach which completely 

relies on the data without reference to the 

underpinning physics [5]. For the ML-based 

approach, an NN as well as a Gaussian process 

regression (GPR)-based techniques are used in 

this work.  

To validate the estimation methods, a 7-

channel WDM experiment is conducted where 

200 Gb/s DP-16-QAM signal is transmitted over 

1000 km of standard SMF. A comparable 

estimation performance in terms of root mean 

square error (RMSE) and maximum estimation 

error is obtained for both physics- and ML-based 

methods with the later performs better to some 

extend. The maximum error across all the 

channel for physics-based method is 0.22 dB 

while that for ML-based approach is 0.17 dB. 

However, about four-fold less measurement data 

is required for the physics-based method for the 

same RMSE.  

SNR estimation methods 

Herein we describe the SNR estimation 

technique used in this work. 

Physics-based method: 

For the physics-based model the SNR of i-th 

channel is given as [6] - 
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where, SNR0 is the back-to-back SNR, PASE is 

the ASE noise power from the inline amplifiers, Pi 

is the i-th channel launch power into the fibre 

span, Nch is the number of WDM channels and 𝜂𝑖𝑗 

is the nonlinear interference coefficient between 

channels i and j accounting for both SPM and 

XPM. Therefore, by measuring the launch power 

of each channel and corresponding SNR, it is 

possible to solve for the unknown variables 

SNR0, PASE and 𝜂𝑖𝑗. Once these variables are 

estimated, SNR can be calculated for any other 

launch power distribution. 

Neural network-based method: 

NN is a powerful ML tool to model the 

relationship between channel power and SNR. 

For the NN-based model, a feed-forward network 

with one hidden layer is found to be sufficient for 

this purpose. The launch powers of all WDM 

channels are used as the input features of the NN 

while the corresponding SNRs are set as outputs. 

The known measured data is used for the training 

of NN while in the testing phase, unknown SNRs 

are estimated for a particular launch power 

profile.     

Gaussian process regression-based method: 

As an alternative to NN, GPR is investigated 



  

which is a probabilistic supervised ML method. 

GPs use Bayesian statistics to find the most likely 

function describing the relationship between a set 

of inputs and a set of outputs, given the data and 

a set of priors [7]. Unlike NN, GPR is a non-

parametric ML method and thus instead of 

assuming a given parametric form and finding a 

set of parameters that describe the mapping, the 

space of functions is searched directly in a 

probabilistic way. Similar to NN, for QoT 

estimation, the input and the output of GPR are 

chosen as the launch power of all WDM channels 

and corresponding SNRs, respectively.  

Experimental setup 

To verify the performance of SNR estimation, we 

conducted an experiment as shown in Fig.1 with 

7 WDM channels transmission over a 1000 km 

link on a 50 GHz grid. Each channel had a net 

data rate of 200 Gb/s, using a 34.5 GBd PM-

16QAM signal. The 16 iTlAs were bulk modulated 

by a modified Ciena WaveLogic 3 line card to 

provide sufficient power to the modulator and 

later a transmitter WSS was used to select 7 

channels centered around 1550 nm. A booster 

EDFA was used before launching the signal into 

the first span of fibre. 

The signal was transmitted over 10 spans of 

link each consisting of 100 km standard fibre. A 

Polatis 32×32 fibre switch was used to connect 

the individual 100 km spans. This switch was also 

used to control the launch power into the spans, 

which in this experiment was uniform in each 

span. In each span, an EDFA with a fixed gain of 

26 dB was used, along with a variable optical 

attenuator (VOA) to compensate for the extra 

gain. 

At the receiver, a WSS was used to select the 

channel of interest (COI) and Ciena WaveLogic 3 

line card receiver was used to demodulate the 

signal. The SNR of the received signal was 

calculated from the receiver pre-FEC BER using 

the relation 𝐵𝐸𝑅 =
3
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The launch power of each channel was 

randomly varied between -3 dBm to 4 dBm and 

corresponding SNRs were measured to generate 

a dataset. We found that the optimum launch 

power was ~0.75 dBm and the chosen data 

points cover the linear, quasi-linear and nonlinear 

regimes. We captured a total of 400 datasets 

each having seven channel powers and 

corresponding SNRs. The number of training 

data was varied which is taken from the first 350 

datasets whereas the rest 50 datasets were used 

for testing purposes.  

For physics-based estimation, the model of 

Eq. (1) was used. A Moore-Penrose 

pseudoinverse matrix-based method was used to 

solve the equation using the measured data [8]. 

For the NN, one hidden layer with 64 nodes was 

used. Also, we used the elu activation function, 

Adam optimization algorithm and MSE loss 

function. For the GPR a kernel function is used to 

model the covariance of the data and in this work, 

we used the ard squared exponential kernel 

function.  

Results and discussion 

First, we check the number of training data 

requirements for each method. For this purpose, 

we measure estimation error (difference between 

measured and estimated SNR) from the test data 

set and then calculate the RMSE. Fig.2 shows 

the RMSE against the number of training data for 

all three methods for the central channel. It is 

found that the physics-based method converged 

very quickly and reached a steady state with a 

small number of datasets. On the other hand, the 

ML-based approach requires relatively larger 

training data convergence and it continues to 

improve marginally with more data. As an 

example, for the same RMSE, the required 

number of the training dataset is 50 for the 

physics-based method whereas it requires 

around 130 datasets to get the same 

performance for the ML-based technique. For a 

larger dataset of >250 ML-based approach 

performs better than the physics-based method. 

An almost similar requirement is found for NN- 

and GPR- based methods.  

Next, we estimate the RMSE for all seven 

channels for a training data of 50 for the physics-

based method and 250 for ML-based methods. 

As shown in Fig.3, comparable performance is 

found for both approaches with the ML-based 

 

Fig. 1: Experimental setup used to verify the SNR estimation techniques. 
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approach performing marginally better in general. 

The maximum RMSE over all the channels is 

0.065 dB for the physics-based method and 

0.055 for the ML-based method. 

 

Fig. 2: RMSE versus number of training data for all three 

methods for the middle channel. 

 
Fig. 3: RMSE of all seven channels for the three SNR 

estimation methods. 

The plot of maximum absolute estimation 

error for the three methods is also depicted in 

Fig.4. It is found that, like RMSE performance, 

the ML-based method performs better than the 

physics-based method. The worst-case 

maximum absolute error for the physics-based 

method is 0.21 dB (ch-6) whereas that for NN- 

and GPR-based method is 0.17 dB and 0.16 dB, 

respectively (ch-1).  

 

Fig. 4: Maximum absolute error of all the channels for the 

three methods. The number of training data is 50 for physics 

and 250 for ML-based methods. 

Unlike the ML-based method, the physics-

based approach is more explainable as it allows 

the estimation of unknown parameters as in Eq. 

(1). As an example, we illustrated the back-to-

back SNR estimation results as in Fig. 5. For the 

back-to-back measurement, we exclude the 1000 

km link and connect the booster amplifier directly 

to the receiver WSS of Fig.1. On the other hand, 

for the physics-based method, the estimation 

value, 𝑆𝑁𝑅0̂ is calculated from the 1000 km 

transmission data as 

 𝑆𝑁𝑅0̂ = argmin
SNR0

𝐸 {|𝑆𝑁𝑅𝑚𝑒𝑠 − 𝑆𝑁𝑅phy|
2

},  

where, SNRmes is the measured SNR and SNRphy 

is the estimated SNR by the physics-based 

method. Provided that back-to-back SNR is 

transmission distance independent, we found a 

good agreement between the measured value 

and physics-based estimated value with a 

maximum estimation error of below 0.2 dB.   

 
Fig. 5: Comparison of measured back-to-back SNR with that 

from the physics-based estimation method. 

Conclusion 

An SNR estimation technique is experimentally 

demonstrated with 7-channel WDM systems from 

its measured launch power per channel using 

physics-based and two ML-based approaches, 

namely NN and GPR. While the physics-based 

method is more interpretable and requires fewer 

measurement data for training, the ML-based 

approach provides marginally better accuracy.  
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