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Abstract We report the 300-mm wafer-scale performance of Silicon-contacted Ge-on-Si lateral sep-
arate absorption charge multiplication avalanche photodetectors, demonstrating sub-µA dark currents
consistently across the wafer, with responsivities of 6 A/W at 22 GHz bandwidth or 2 A/W at 35 GHz.

Introduction

Silicon Photonics (SiPho) is emerging as a key
technology covering an extensive range of ap-
plications such as datacom, telecom, and sens-
ing[1]. By exploiting the mature Complementary
Metal Oxide Semiconductor (CMOS) processing
techniques, high-volume, low-cost and high-yield
Photonic Integrated Circuit (PIC) products are in-
troduced in various markets. Optical transceivers
for high-bandwidth networking for telecom, cloud
datacenters and in high-performance compute
clusters are prime applications currently driving
the development of SiPho.

Highly sensitive receivers based on Avalanche
Photodetectors (APDs) offer an attractive op-
tion to improve the link budget in optical links,
leveraging the high internal gain realized in the
APDs[2]. In Separate Absorption Charge Multipli-
cation (SACM) APD architectures, Ge is used for
the absorption layer and Si for the multiplication
layer, leveraging the lower k-ratio offered by Si to
realize a low excess noise factor[3],[4]. Both lat-
eral[5]–[8] and vertical[9]–[11] SACM Ge-on-Si APDs
have been reported in literature the past 15 years,
aiming at high-bandwidth, high responsivity, low
dark current and low noise devices with high reli-
ability.

In this paper, we report on the wafer-scale
performance of Silicon-contacted Ge-on-Si lat-
eral SACM (LSACM) avalanche photodetec-
tors, seamlessly co-integrated in a 300-mm
SiPho platform along with best-in-class Si ring
modulators[12],[13], low-loss Si Wavelength Divi-
sion Multiplexing (WDM) filters[14], and various
other components required for implementing Tbp-
s/mm WDM optical transceivers targeting next-
generation optical I/O in AI/ML systems[15]. The
LSACM APDs have wafer-scale responsivities of
6 ± 2 A/W at 22 GHz bandwidth or 2 ± 0.2

A/W at 35 GHz bandwidth, enabling future high-
sensitive receivers at 32 Gbps or 50 Gbps NRZ
lane rates respectively, ideally suited for realizing
widely parallel, low-power WDM interconnects in
AI/ML systems. Low dark current, below 100 nA
and 600 nA respectively, are consistently mea-
sured across the wafer, signifying a robust inte-
gration process and providing a positive outlook
for ongoing reliability studies.

Device design and process flow
The Ge-on-Si avalanche photodetectors are 15
µm long lateral p-i-p-i-n diodes fabricated in
imec‘s 300-mm Silicon Photonics platform[16],[17],
using Silicon-On-Insulator (SOI) wafers with 220
nm Si on top of 2 µm-thick Buried Oxide (BOX).
A cross-section view of the final device is shown
in Fig. 1. First, various Si patterning steps were
performed to precisely shape the waveguides us-
ing 193-nm immersion lithography, followed by
p-type and n-type Si implantations to form the
various p-n junctions in Si. Ge was then se-
lectively grown on top of Si using Selective Epi-
taxial Growth (SEG) followed by Chemical Me-
chanical Polishing (CMP) to form the waveguide-
based avalanche photodetector. Standard Tung-
sten contact plugs landing on doped Si were then
processed, followed by a deposition of 1 µm-thick
Cu metal lines as first metal layer in the Back-
End-Of-Line (BEOL). A second metal layer con-
nected to the first by Vertical Interconnect Ac-
cesses (VIAs) was then processed before depo-
sition of Al to create metal bond pads for device
characterizations.

Wafer-scale DC characterization
The APDs were characterized at room tempera-
ture using a wafer prober station for wafer-scale
DC and RF opto-electrical measurements. The
test setup included a tunable wavelength laser



Fig. 1: Cross-section view schematics (a) and SEM image on
Ge (b) of the lateral SACM APDs.

source, a polarization controller to optimize light
coupling into the integrated waveguides through
Fiber Grating Couplers (FGCs), and a power sen-
sor. A source meter was also used to apply
DC bias to the devices by means of Ground-
Signal (GS) probes landing on Al-based metal
bond pads.

Two successive I-V sweeps were performed
with laser off and then on, in order to collect dark
and light current respectively. A 0.5 mA current
compliance was applied during the measurement
campaign. Throughout the measurements, the
input optical power at the APD under test was
kept at an estimated -15 dBm (about 30 µW) at
1310 nm wavelength. Typical dark and light I-V
curves are shown on Fig. 2, illustrating a sharp
avalanche breakdown for applied voltages lower
than -13 V.

Fig. 2: Example of experimental dark and light I-V sweeps of
the lateral APDs.

The wafer-scale dark current and responsivity
(at 1310 nm wavelength) data across 14 dies are
shown on Fig. 3 and Fig. 4 respectively. Me-
dian responsivity values up to 13 A/W could be

achieved at -13 V applied voltage, while 6 A/W
median responsivity could be obtained at -12 V
together with sub-µA dark current level.

Fig. 3: Wafer-scale dark current measurement results across
14 dies.

Fig. 4: Wafer-scale responsivity measurement results at
1310 nm wavelength across 14 dies.

RF characterization
The 3-dB bandwidth of lateral APDs was ex-
tracted at room temperature from small signal
opto-electric S-parameters measurements, using
a 50 GHz Lightwave Component Analyzer (LCA).
Typical raw S21 data are shown on Fig. 5.

Fig. 5: Example of S21 measurement results for different
applied DC voltages.

The 3-dB cut-off frequency (or 3-dB bandwidth)
was directly extracted from the square magni-
tude |S21|2 for each and every applied DC volt-
age. The results across 3 dies are shown on



Tab. 1: Summary results of the reported Ge-on-Si lateral SACM APDs and comparison with recent literature.
Ref. Voltage [V] Dark current [µA] Wavelength [nm] Optical power [dBm] Responsivity [A/W] Bandwidth [GHz]

[5] -12 100 1310 -14 8 27
[5] -12 100 1310 -20 25 27
[7] -5 5.5 1310 -15 3 31.4
[7] -5 5.5 1310 -23 26 32.3
[8] -10 0.3 1310 -15 4 27

This work -10 0.03 ± 0.03 1310 -15 2 ± 0.2 35 ± 2
This work -12 0.15 ± 0.2 1310 -15 6 ± 2 22 ± 1

Fig. 6. Bandwidth values of 35 GHz and 22
GHz were achieved, at -10 V and -12 V applied
DC voltages respectively. When increasing the
applied reverse voltage to -13 V, the bandwidth
drops down to 13 GHz (at -13 V) owing to the in-
crease in avalanche buildup time as the multipli-
cation gain increases[18]. A summary of the DC
and RF results can be found in Tab. 1, illustrat-
ing the competitive dark currents of our LSACM
APDs when compared with recent state-of-the-art
reports, at similar responsivity and bandwidth lev-
els (for comparable input optical power).

Fig. 6: Bandwidth measurement results at 1310 nm
wavelength across 3 dies.

Conclusions
We reported the wafer-scale integration of low
dark current and high-responsivity Si-contacted
Ge-on-Si lateral SACM waveguide APDs in a 300-
mm SiPho platform, along with high-performance
Si (ring) modulators and high-end passive de-
vices as required for optical interconnects for
next-generation AI/ML compute systems. At -15
dBm input optical power, the LSACM APDs have
responsivities of 13 A/W for 13 GHz bandwidth, 6
A/W for 22 GHz bandwidth or 2 A/W for 35 GHz
bandwidth. Importantly, the APDs operate with
much lower, sub-µA dark current levels as com-
pared to previous reports, and with low variability
across the wafer. Not requiring any metal con-
tacts to Ge or dedicated Si epitaxial growth, the
LSACM APDs are an attractive alternative over
more conventional vertical SACM designs.
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