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Abstract We present a comprehensive study of a field-deployed SDM system based on a coupled-core
four-core fiber, providing the first detailed comparison between SDM theory and experimental data. The
study includes validation of the model’s accuracy and examination of the intensity impulse response (IIR)
duration. ©2023 The Author(s)

Introduction

The fiber-optic communications industry is fac-
ing an imminent capacity crunch[1], prompting the
need for new and scalable technologies. One
promising solution is SDM transmission[2], which
combines multi-core fibers (MCF)[3] and multi-
mode (MMF) fibers[4]. SDM utilizes multiple-input
multiple-output (MIMO) techniques that are imple-
mented through electronic digital signal process-
ing (DSP). To design efficient MIMO DSP algo-
rithms, it is necessary to have an understand-
ing of the statistics related to the signal propa-
gation in SDM systems. Two key propagation ef-
fects in SDM transmission systems are modal dis-
persion (MD) and mode-dependent loss (MDL),
and several models have been proposed to eval-
uate their impact on system performance[5],[6]. A
recent contribution is a unified model proposed
in[7], which considers the effects of both MD and
MDL on the system’s intensity impulse response
(IIR). That work focused on a scenario commonly
found in coupled-core multi-core fibers, where all
modes are randomly coupled, and introduced a
complex MD vector τ⃗ that accounts for the pres-
ence of MDL. Using a mathematical representa-
tion of multiple-mode propagation, the model ex-
amines how MD and MDL accumulate along the
link and describes their impact on the IIR[8] of the
system. The duration of the IIR determines the
memory requirements for a MIMO-SDM receiver,
and the model shows that it is related to the mean
square value of τ⃗ . Nonetheless, to date, theoreti-
cal models for SDM fiber systems have only been
validated through numerical simulations or exper-

iments on spooled fibers. This paper presents a
novel contribution: the first statistical analysis of
experimental data measured in a field-deployed
SDM fiber installation, located in the Italian city of
L’Aquila[9]. Our results show a strong agreement
with the theory, providing a solid foundation for the
random coupling model of SDM fiber links.

Theoretical model
In this section, we brief the theoretical model[7] for
the propagation of light in a fiber that supports 2N

modes, where N is the number of spatial modes
and the factor two accounts for polarization de-
generacy. This model builds on the concept of
the field vector E⃗(z, t), which can be constructed
by stacking the 2N complex envelopes, describ-
ing the excitations of the individual modes, on top
of each other and denoted its Fourier transform
by E⃗(z, ω). Linear propagation of light along the
fiber can be described by the relation E⃗(L, ω) =

T(L, ω)E⃗(0, ω), where T(L, ω) is the transfer ma-
trix of the fiber link and L is its length. In order to
simplify the notation, in what follows we drop the
dependence of T on L. Neglecting scalar factors
common to all modes, the frequency dependence
of T is given by[7]:

∂T(ω)

∂ω
= iQ(ω)T(ω) = i

τ⃗ · Λ⃗
2N

T(ω). (1)

Here, Q is a matrix with eigenvectors represent-
ing the principal modes of propagation (PMPs),
and the eigenvalues contain information about the
delays associated with the PMPs[10]. Specifically,
the real part of the eigenvalues gives the cor-



responding modal group delay (GD), while the
imaginary part provides information about loss.
The quantity Λ⃗ that appears in Eq. (1) is a vec-
tor whose elements Λn are generalized Pauli ma-
trices and τ⃗ is the complex-valued generalized
Stokes vector introduced in[7], whose components
are given by

τn = −i Trace{ΛnQ(ω)}. (2)

The complex MD vector τ⃗ extends the complex
polarization-mode dispersion (PMD) vector[11] to
the multi-mode case in the presence of MDL, pro-
viding a complete characterization of both MD
and MDL. In the single-mode case, the complex
PMD vector is related to the distortion of the prop-
agated signal[12]. To proceed, it is important to
characterize the statistical properties of the vec-
tor τ⃗ . This can be achieved by examining the the-
oretical expressions for two-frequency correlation
functions, which have been derived in[7].

fτ⃗ ,τ⃗ (ω) = ⟨τ⃗(ω) · τ⃗(0)⟩

=
D

ω2

{
1− exp

[
−τ2ω2

D

]} (3)

fτ⃗ ,τ⃗∗(ω) = ⟨τ⃗(ω) · τ⃗∗(0)⟩

=
Dτ2

ω2τ2 − α2

{
1− exp

[
−ω2τ2 − α2

D

]}
(4)

where D=4N2−1 is the dimensionality of the gen-
eralized Stokes space. These expressions de-
pend on the scalar parameters τ2 and α2 which
can be extracted from experimental data. They
account for mode coupling and the local effects
of MDL, respectively. It is worth noting that only
Eq. (4) is impacted by the presence of MDL, as
seen through the parameter α2, whereas Eq. (3)
retains the same expression as it would in the
absence of MDL. The matrix Q, or equivalently
the vector τ⃗ , provides a complete description of
MDL. However, due to their complex nature and
difficulty in measurement and interpretation, sum-
mary parameters are often employed to capture
the phenomenological aspects of the link. For in-
stance, the IIR[8] is a useful parameter that pro-
vides valuable information about the link’s behav-
ior. The relationship between the MD vector and
the IIR is discussed in the following. By analyz-
ing the IIR, it is possible to determine the effects
of mode mixing on the propagation of light in the
fiber and to optimize the fiber’s performance for
specific applications. The IIR of a fiber is defined

as follows: a frequency-flat broad-band signal is
launched into the fiber exciting only one mode,
and the total output power is measured as the
sum of the output powers in all the modes. By
exciting the various fiber modes one by one and
by averaging the received power signals, we ob-
tained the quantity I(t) in which we are interested.
Mathematically, this quantity can be expressed
as:

I(t) =
1

2N
Trace[H(t)H†(t)] (5)

where H(t) is the inverse Fourier transform of
the transfer matrix T(ω). In the regime of strong
mode mixing, the analytical expression of the av-
erage IIR is given by[7]:

Ĩ(t) = I0 exp

(
−2N2t2

τ2

)
(6)

where I0 is a normalization constant accounting
for gain and loss. From Eq. (6), we would like to
highlight the physical meaning of the parameter
τ2, which represents the duration of the IIR.

Experimental results
In this section we validate the proposed model
through a comparison with experimental data
taken on a field-deployed cabled coupled-core
four-core fiber installed in the city of L’Aquila[13],
Italy. The cable is 6.3 km long, contains 18 MCFs,
and is installed in an underground tunnel. Specifi-
cally, it comprises 12 strands of coupled-core four-
core fiber and the link is formed by splicing to-
gether 11 of these strands, resulting in a total
length of 69 km. The average MDL of the link is
around 2.5 dB. A detailed description of the ex-
perimental setup as well as of the technique that
was used to acquire the data can be found in[14].
To obtain an accurate transfer matrix T for the
fiber, it is essential to make coherent measure-
ments of all the outputs from a given input. Once
the transfer matrix T has been obtained, we can
characterize the GD of the fiber. To this end, we
compute the matrix Q from Eq. (1) as:

Q = −i

logm

[
T(ωn)T

−1(ωn−k)

]
ωn − ωn−k

(7)

where logm denotes the matrix logarithm, and the
value of k determines the frequency step used
to compute the derivative of T. Using the ma-
trix Q, we can calculate the eigenvalues and de-
termine the distribution of their real parts. This
corresponds to evaluating the probability density



function (pdf) of the GDs. Figure 1 illustrates
the marginal pdf of the GDs for the fiber under
test, which supports eight modes of propagation
(2N=8). The marginal pdf exhibits eight peaks,

Fig. 1: Marginal pdf of the GDs for a eight-mode fiber.

corresponding to the GDs of eight different prin-
cipal modes, and it is consistent with the findings
of[15],[16]. Given the matrix Q and using Eq. (2), we
can determine the frequency-dependent vector τ⃗ .
Figure 2 showcases the first component among
the D=63 components of τ⃗ to provide an exam-
ple. The remaining components exhibit analo-
gous statistical properties. From τ⃗ we can ex-

Fig. 2: Real and imaginary part of the first component of τ⃗ .

tract the two scalar parameters τ2 and α2 from
⟨τ⃗ · τ⃗⟩ = τ2 and

⟨τ⃗ · τ⃗∗⟩ = Dτ2

α2

[
exp

(
α2

D

)
− 1

]
. (8)

Then, we compute the two autocorrelation func-
tions and fit them with Eqs. (3) and (4), substi-
tuting the computed values of τ2 and α2. The re-
sults of this procedure are presented in Figure 3.
The two expressions are in fairly good agreement.
In both figures, the dashed yellow curve corre-
sponds to the result obtained by substituting the
two scalar parameters, retrieved from the vector
τ⃗ , into equations (3) and (4). The lower frequency
correlation in the experimental data may be at-
tributed to some noise in the measurement pro-
cedure or in the derivation of the matrix Q. Never-
theless, the experimental results confirm the the-
oretical prediction that the imaginary part of the
correlation is largely negligible. The final step of
our analysis involves calculating the IIR through
the formula outlined in Eq. (5) and verifying its co-
herence with the theoretical expression described

Fig. 3: Real and imaginary part of the autocorrelation
functions (a) ⟨τ⃗ · τ⃗⟩ and (b) ⟨τ⃗ · τ⃗∗⟩ versus frequency. The
dashed yellow lines refer to the theoretical expressions in

Eqs. (3) and (4)

in Eq. (6). In particular, using for τ2 the value
of 0.035 ns2 extracted from the data, we can fit
the computed IIR with the theoretical expression.
The results of the fitting process are presented in
Figure 4, which demonstrates an excellent agree-
ment between data and theory. Additionally, the

Fig. 4: The solid line is a plot of the computed IIR, while the
dashed line refers to the theoretical expression for the IIR

from Eq. (6)

model proves that modifications to the system’s
MDL do not impact the IIR duration, despite the
fact that both MD and MDL affect the accumula-
tion of τ⃗ .

Conclusions
In summary, our work provides insights for the
continued development of SDM fiber systems, en-
abling a deeper understanding of the effects of
MD and MDL and validating theoretical findings in
a real scenario. To the best of our knowledge, this
study represents the first comprehensive compar-
ison between SDM theory and experimental data
measured in a field-deployed coupled-core multi-
core fiber for SDM transmission.
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