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Abstract We compare hardware parallelization of CD equalizers on 10 km 4x200 Gb/s IM/DD PAM4
O-band measurements. A single neural network equalizer with multiple output symbols saves 20% of
reference chip area versus multiple single-symbol output variants and 77% versus Volterra non-linear
equalizers. Multi-task learning enables cost-efficient scenario flexibility. ©2023 The Author(s)

Introduction

In fibers, transmission of optical signals suffers
from chromatic dispersion (CD) and non-linearity
effects in intensity modulation / direct detection
(IM/DD) systems[1]. Such effects lead to intersym-
bol interference and bit errors. Volterra non-linear
equalizers (VNLEs), as shown in Fig. 1(a), are ef-
fective countermeasures. However, VNLEs suffer
from huge computation complexity and numerical
instability[2].

To realize equalization and demapping, neu-
ral network non-linear equalizers (NN-NLEs) are
proposed[2]–[4]. In high speed transceiver imple-
mentations, digital equalizers have to operate in
parallel to reach data rates with system clocks,
which run at a much lower frequency. Most NN-
NLEs are built by direct parallelization of single-
symbol output neural network non-linear equal-
izers (SSO-NLEs). An SSO-NLE is illustrated in
Fig. 1(b). Whereas the accuracy of SSO-NLEs
is promising, their complexity remains critical for
high-speed communication systems.

Multi-symbol output neural network non-linear
equalizers (MSO-NLEs) are explored to replace
SSO-NLEs over the last two years[5]–[7], as shown
in Fig. 1(c). MSO-NLEs are effective to achieve
both high performance and low complexity, be-
cause shared signal features are extracted a sin-
gle time and leveraged efficiently to predict mul-
tiple consecutive symbols. Researchers also ap-
ply compression techniques such as pruning to
reduce the complexity of MSO-NLEs further[6].

However, the above MSO-NLEs are trained,
pruned, and fine-tuned on different problem in-
stances separately, leading to different neural
network structures and multiple sets of weights
and biases. Thus, we need to design a config-
urable hardware implementation for MSO-NLEs

with full multipliers[4] to support different param-
eters for different situations. Moreover, large on-
chip memory is required to store the parameters
for a single problem instance. To reduce the hard-
ware cost and following our previous work[4], we
use multi-task learning (MTL) to train a single
MSO-NLE on datasets of multiple wavelengths
jointly to share the weights and keep the biases
still flexible. Flexible biases equip the NN-NLE
with the adaptability for different wavelengths to
achieve a low BER (bit error rate). On the other
hand, the shared weights are fixed to simplify
the multipliers. We also apply pruning to this
approach and achieve area savings of 20% and
77% compared with an MTL-trained SSO-NLE
and VNLEs, respectively.

(a) VNLE. (b) SSO-NLE.

(c) MSO-NLE.

Fig. 1: Volterra non-linear equalizer and single/multiple
symbol output neural network non-linear equalizers.

Hardware Parallelization
NN-NLEs outperform classical equalizers, but
the necessity of hardware parallelization is often
overlooked. In fact, hardware parallelization[8] is
inevitable for high-speed transceivers because of
the mismatch between the high-speed baud rate
of the transmission and the low-speed clock fre-
quency of the transceiver ASIC. For example, a
typical operating clock frequency could be around
1 GHz or less for today’s transceivers, while the



baud rate can be 112 GBd or even higher. In
order to support the much higher baud rate, a
straightforward approach is to instantiate multi-
ple parallel copies of a trained equalizer to ob-
tain multiple consecutive symbols simultaneously.
The number of parallelized copies of an equalizer
with 1 sample per symbol processing, denoted as
Ncopies, is expressed as follows

Ncopies ≥
Rbaud

fclk
× 1

Nout
, Ncopies ∈ Z+ (1)

where Rbaud is the baud rate of the transmis-
sion, fclk is the operating clock frequency of the
transceiver, and Nout is the number of predicted
symbols at the output of each copy. For example,
assuming Rbaud = 112 GBd and fclk = 1 GHz, we
need at least 112 parallelized copies of a trained
VNLE or SSO-NLE (Nout = 1), and at least 38
copies of a trained MSO-NLE (if Nout = 3).

(a) Separately-trained NN-
NLE can match specific
wavelengths by switching
both weights and biases.

(b) MTL-trained NN-NLE can
match specific wavelengths
by switching merely between
biases.

Fig. 2: Separate learning and multi-task learning.

Multi-Symbol Output Neural Network Non-
Linear Equalizer
MSO-NLEs[5]–[7], which are designed to output
multiple consecutive symbols per copy, proved to
be effective to achieve both high performance and
low complexity compared with SSO-NLEs and
VNLEs. The information required to predict mul-
tiple symbols is already contained in the input,
so predicting multiple symbols will be more effi-
cient than predicting only a single symbol. More-
over, compression techniques are applied to re-
duce the complexity of MSO-NLEs further[6].

However, according to the conventional ap-
proaches, such MSO-NLEs are trained, pruned,
and fine-tuned on datasets of different wave-
lengths separately as shown in Fig. 2(a), leading
to multiple sets of weights and biases. When the
equalization target for an MSO-NLE changes, a
specific set of weights and biases should be de-
termined and loaded into the hardware. Thus,
full multipliers[4] are required to enable different
parameters for different wavelengths during VLSI
implementation. In addition, large on-chip mem-
ory is required to store the parameters for a spe-
cific wavelength application. Moreover, although

some weights of MSO-NLEs are pruned during
separate learning, the corresponding multipliers
are difficult to be eliminated unless those weights
are pruned in the same position of the neural net-
work structure for all involved problem instances.

Multi-task Learning for Multi-symbol Output
Neural Network Non-linear Equalizer
To solve the above problems, we use MTL to
train each MSO-NLE copy on datasets of mul-
tiple wavelengths jointly as shown in Fig. 2(b),
which allows freezing the weights while keeping
the biases still flexible. Flexible biases provide the
MSO-NLE with the adaptability for different wave-
lengths. On the other hand, frozen weights can
be used to simplify the multipliers to reduce their
area, leading to a smaller hardware cost. More-
over, frozen weights are fixed, so on-chip memory
to store the weights can be reduced. Unlike sepa-
rate learning, when some weights are pruned dur-
ing multi-task learning, the corresponding multipli-
ers can be really removed because there is only
one set of weights for all involved wavelengths.

Fig. 3: Experimental 10 km setup with offline DSP.

Experimental Setup
The IM/DD measurement setup with offline DSP
for 10 km PAM4 transmission with 112 GBd per
lane is shown in Fig. 3. Below each electrical/op-
tical component, the 3 dB bandwidths are written.
At the transmitter (Tx), after duobinary precod-
ing[3], pseudorandom binary sequences (PRBS)
are Gray-mapped to PAM-4 symbols. A raised
cosine (RC) filter with roll-off factor of 0.14 im-
plements pulse shaping. After resampling, a 120
GS/s arbitrary waveform generator (AWG) is used
to convert the digital samples to analog signals
which are amplified by a 60 GHz driver ampli-
fier (DA) towards an O-band Mach Zehnder mod-
ulator (MZM). While standard O-band CWDM4
wavelengths 1270 nm, 1290 nm, 1310 nm, and



Tab. 1: Designs and experimental results of DB VNLEs, DB SSO-NLEs, and DB MSO-NLEs.

Notation Design* Trained Pruned Copy† Area (µm2)‡
DB VNLE [21,9,7] Separately 0.0% 112 1.66E+7

DB SSO-NLE 21|11|7|1 Separately 11.43% ∼ 26.35% 112 1.29E+7
DB MSO-NLE 23|25|13|3 Separately 15.75% ∼ 35.24% 38 1.29E+7
DB SSO-NLE 21|11|7|1 MTL 0.32% 112 4.80E+6
DB MSO-NLE 23|25|13|3 MTL 24.63% 38 3.82E+6
VNLEs, SSO-NLEs, and MSO-NLEs are all trained on a duobinary (DB) target[3].
* The design for DB VNLEs indicates the number of memory taps of [1st, 2nd, 3rd] order.

The designs for DB SSO-NLEs and DB MSO-NLEs indicate the number of neurons in each layer.
The activation function of 1st, 2nd, 3rd, and 4th layer is none, tanh, tanh, and linear, respectively (1st layer
is the input). tanh is implemented using H- tanh, a low-cost variant of tanh[3].

† The number of parallelized copies of an equalizer required in the hardware parallelization architecture.
‡ Area evaluation is conducted using Design Compiler[9] for logic synthesis using 45nm process technology.

1330 nm are focused, further captures at in-
between wavelengths allow for exploring the per-
formance/wavelength relationship. After 10 km
standard single mode fiber (SSMF) transmission,
the received optical power (ROP) at the input of
a praseodymium-doped fiber amplifier (PDFA) is
controlled by a variable optical attenuator (VOA)
at 7 dBm. An optical filter suppresses the broad-
band noise of the PDFA. The filtered optical signal
is input to a photodiode (PD). The electrical out-
put of the PD is digitized by a 256 GS/s digital
oscilloscope. At the receiver (Rx), timing recov-
ery operates at 2 samples per symbol (sps) first,
and then the output signals are downsampled to
1 sps for equalization. Modulo-4 operation[3] and
PAM4 slicing are applied before BER estimation.

We train equalizers on a duobinary (DB) tar-
get[3]. The designs of DB VNLEs and DB SSO-
NLEs follow our previous work[4]. DB SSO-NLEs
and DB MSO-NLEs are trained with 500 epochs
to reach a low mean squared error. We use
182k PAM4 symbols for training and other 45k
symbols for inference. DB SSO-NLEs and DB
MSO-NLEs are first trained separately and jointly
on datasets of multiple wavelengths respectively,
and then pruned to reduce complexity and fine-
tuned to mitigate BER degradation. Magnitude-
based pruning is used to zero the weights whose
absolute values are smaller than a threshold. DB
VNLEs are only separately-trained without prun-
ing. Uniform quantization is adopted. Multipli-
ers have 8-bit input and 16-bit output. Inputs with
larger bit-width are truncated to the 8 most signifi-
cant bits (MSB). The bit-width of adders increases
level by level to keep the carry bit.

Experimental Results
Fig. 4 and Tab. 1 show the BER, hard-
ware area, and percentage of pruned weights
comparison between separately-trained DB VN-
LEs, separately/MTL-trained DB SSO-NLEs, and
separately/MTL-trained DB MSO-NLEs.
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Fig. 4: BER comparison.

The percentage of pruned weights depends on
the specific wavelength when we train and prune
DB SSO-NLEs and DB MSO-NLEs on datasets
of different wavelength separately. Multipliers in
separately-trained DB SSO-NLEs and DB MSO-
NLEs are hard to be eliminated to reduce the
area, because very few pruned weights are in
the same position of the neural network structure
among all wavelengths. Although the areas of
separately-trained DB SSO-NLEs and DB MSO-
NLEs in Tab. 1 are similar, separately-trained DB
MSO-NLEs achieve lower BER.

Pruned weights of the MTL-trained DB SSO-
NLE and DB MSO-NLE can be used to elimi-
nate multipliers and reduce the hardware area. To
maintain the BER, only 0.32% weights are pruned
in the MTL-trained DB SSO-NLE. But 24.63%
weights of the MTL-trained DB MSO-NLE can be
pruned and its BER is still better than the MTL-
trained DB SSO-NLE. The MTL-trained DB MSO-
NLE has area savings of 20% and 77% compared
with the MTL-trained DB SSO-NLE and DB VN-
LEs, respectively.

Conclusions
We consider parallelization of CD equalizers. We
use MTL to train an MSO-NLE on datasets of mul-
tiple wavelengths jointly. By sharing a single set
of weights among all involved wavelengths, keep-
ing biases reconfigurable, and applying compres-
sion techniques, we achieve area savings of 20%
and 77% compared with an MTL-trained SSO-
NLE and VNLEs, respectively.
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