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Abstract We demonstrate the digital twin of a network, network elements, and operating environment
using machine learning. We achieve network card failure localization and remote collaboration over 86
km of fiber using augmented reality. ©2023 The Author(s)

Introduction
A network digital twin is a simulation model of a
communication system and its operating environ-
ment that enables applications such as the mon-
itoring of network operations in real time, pre-
dictive maintenance, and testing “what if” sce-
narios before implementation on a production
network. Recent work on digital twins of opti-
cal networks has developed accurate simulation
and machine-learning (ML) models of the fiber
transmission system[1]. There has been an in-
creased awareness that communication networks
are physical systems that interact with and can be
used to sense the environment[2], motivating the
digital-twin model to include the operating envi-
ronment. Adding the physical and environmen-
tal information has multiple benefits, including im-
proved physical connectivity visibility, a better un-
derstanding of shared risk groups, and a better
facility security analysis.

In this work, we demonstrate an optical network
digital twin model based on a graph neural net-
work (GNN)[3] with novel capabilities enabled by
models of the physical network elements them-
selves as well as the operating environment. The
network operators interact with the digital twin in
real time using a distributed augmented reality
(AR) application empowered with ML through re-
mote computing. The AR application relies on a
low-latency connection to a remote edge server
that performs multiple computational functions.
By using a 3-dimensional (3D) map of the net-
work surroundings, 3D models of the network el-
ements, and fault localization on the optical net-
work, we show that the digital twin enables auto-
mated guidance of an on-site operator to a net-
work element with a failure condition. When the
operator views the network element with AR, a
distributed ML-based image classification algo-

rithm indicates the card that has the root-cause
alarm condition. Finally, the AR application al-
lows real-time interactive collaboration with a sec-
ond operator remotely connected to a node after
86 km of fiber propagation so that knowledge can
be shared across central and dispersed locations.
Within the AR session, both operators can ma-
nipulate 3D computer-automated design (CAD)
models of the network element and card as vir-
tual 3D holograms, thereby enabling collaborative
maintenance operations inside a metaverse[4].

Digital Twin of the Network and Environment
We construct a digital twin representation of an
optical transport network and the laboratory en-
vironment, encompassing the network topology,
network equipment 3D models, and a 3D map of
the environment. Fig. 1a is a diagram of the op-
tical network consisting of six commercial Nokia
1830 PSS optical transport nodes (TNs) with flex-
grid reconfigurable optical add-drop multiplexers
(ROADMs). Wavelength (WL) paths and fiber
lengths are indicated in the figure. Fig. 1b shows
an AR image of a computer-generated downsized
virtual hologram of one of the PSS-32 shelves of
node TN1. The hologram was generated from 3D
CAD models of the network element. Fig. 1c is
a photograph of the surrounding environment of
the network, and Fig. 1d is a 3D map of the same
location created with a Microsoft HoloLens 2 AR
headset (ARH)[5].

Figure 2a shows a diagram of the equipment
used for the AR remote collaboration experiment.
The optical transport nodes TN1 and TN2 are the
same nodes as shown in the optical network di-
agram of Fig. 1a and wavelength WL1 is used
to carry traffic between the nodes for the exper-
iment. WL1 has a line rate of 200 Gbit/s using
8-QAM modulation format and a low bit-error ra-
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Fig. 1: a) Optical network topology, b) 3D digital model of a network element, c) image of the network environment and d) 3D
mapping of the network environment.
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Fig. 2: a) Experiment setup for remote AR collaboration, b) illustration of ML-based fault localization, c) top-view 2D map of the
network surroundings with virtual navigation markers, and d) image of navigation guidance taken directly through the display of

the local (on-site) ARH at the P2 location.

tio in both directions. Two Centec V586 Open-
flow (OF) version 1.3 switches with 10G and 100G
interfaces connect to 100G client interfaces on
D5X500 flexible bitrate transponders at TN1 and
TN2 that generate and terminate WL1. An in-
stance of the Open Network Operating System
(ONOS)[6] software-defined network (SDN) con-
troller controls the OF switches. Wi-Fi access
points (APs) connect the local and remote AR
headsets to the network with 2.5G connections
to the OF switches at the local and remote sites,
respectively. A 100G path through the network
carries both the AR traffic from the local ARH
to a remote server as well as a constant bitrate
(CBR) stream from a 100G interface of a Spirent
SPT-N12U traffic generator (TG) that produces bi-
directional competition to the AR traffic.

On-demand computing is enabled using a re-
mote server that is equipped with an NVIDIA RTX
A6000 graphics processing unit. The server as-
signs tasks to clients with AR capabilities, pro-
cesses the requests from the clients through
ML models, and synchronizes the operations be-
tween the clients. In the experiment, WL2 expe-
riences frame losses and three severe network
card alarms, as illustrated in Fig. 2b. The figure il-
lustrates the various card-level network elements
such as optical transponder (OT), line amplifier
(LA), wavelength selective switch (WSS), array
amplifier (AA), multicast switch (MCS), and fiber
span. A fault localization model[3], which employs
GNNs and natural language processing, is exe-
cuted on the remote server and successfully iden-
tifies the optical transponder of WL2 as the source
of the failure by collecting the alarms from the

network elements and utilizing the network con-
nectivity graph, as illustrated in Fig. 2b. The AR
applications were developed using Python and
C# with Unity[7], OpenXR[8], and mixed reality
toolkit[9]. An on-site (local) operator wearing an
ARH uses a hand-operated menu to choose be-
tween applications, set up parameters such as
the server IP address, and connect or disconnect
from the remote server.

1) Lab navigation: We developed an AR-
based lab navigation application to assist network
operators in efficiently navigating to their desired
destination, e.g., a rack containing a failed net-
work card. A top view of the 2D lab map is pre-
sented in Fig. 2c, where a path from the start-
ing point (P1) to the rack containing the failed
transponder (P4) is indicated by a series of blue
virtual directional arrows and the destination is
marked by a virtual red flag. The on-site ARH op-
erator receives the coordinates of the arrows and
the flag from the remote server, which calculates
the path using the A-star path-finding algorithm[10]

based on the environment’s 3D map of Fig. 1d.
Each rack has two network equipment shelves,
and the height of the flag serves as an indica-
tion of the targeted shelf level. Fig. 2(d) shows
an AR navigation image captured directly through
the display of the local ARH at the P2 location
along the navigation path.

2) Network card identification: After locating
the shelf, the next step is to indicate to the oper-
ator the network cards with alarms and identify
the root-cause of failure. Fig. 3a shows a dia-
gram of the process for network card identification
and indication to the operator through ML-based
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Fig. 3: a) Diagram of the process for network card identification using remote edge computing, b) maximum bitrate and object
identification round-trip latency with and without CBR traffic metering, c) histogram of ML inference and network data round-trip

times for object identification with CBR metering, d) image of AR-assisted remote collaboration for card replacement

computation at the remote server. The compu-
tation uses the object detection model YoloV7[11],
which was fine-tuned using 824 captured images
in order to detect and classify 11 different types
of network cards and 2 different shelves. We
employ the trainable bag-of-freebies method[12]

to improve accuracy and reduce the size of the
training dataset. The webcam of the ARH cap-
tures images at a rate of 5 frames per second,
which are sent to the remote server. YoloV7 out-
puts the name of the detected card, a bound-
ing box that encompasses the card, and a con-
fidence score. A higher confidence score indi-
cates the likelihood that the box contains the ob-
ject, with a maximum score of 1. The coordinates
of the bounding boxes provide the relative posi-
tions of the detected cards. Using the card ar-
rangement information retrieved from the network
element database, cards with alarms can be de-
termined. This information is then sent back to the
ARH with additional color coding to indicate the
nature of the alarm. Cards with a failure requir-
ing replacement are indicated in red, while cards
with an alarm that are not the main source of fail-
ure are indicated in blue. The bounding boxes,
along with the card model names and confidence
scores, are displayed on the ARH. In the case of
the shelf in Fig. 3a, the flexible-bitrate OT card
(model: D5X500Q) is determined to be the main
source of failure with a confidence score of 85%,
and the LA card (model: ASWG) is also detected
as having an alarm, but the GNN ML model of the
network determines that it is not the root cause
of the alarm. Note that the shelf image in Fig. 3a
contains four of the same LAs that are not indi-
cated as faulty by the remote server computation.
Due to the knowledge of card positions, the LA
with the alarm, which is rightmost among the four,
has been successfully identified.

We tested the robustness of the remote classi-
fication computation to network congestion by in-
troducing CBR competition to the AR traffic with
the traffic generator shown in Fig 2a. We use
the OpenFlow[13] meter table to prioritize the AR

traffic, which restricts the maximum rate of the
competing traffic to 90 Gb/s of the 100 Gb/s to-
tal. Fig. 3b shows the maximum bitrate between
the on-site ARH and the remote edge server and
the total round-trip latency for the identification re-
sult, which is caused by the ML inference time of
YoloV7 on the server and the network round-trip
time over 86 km of single-mode fiber and the Wi-
Fi link. With prioritization of the AR traffic, we
measured a maximum of 330 Mb/s bitrate with
iPerf[14], and <35 ms total round-trip latency for
the card identification result. Fig. 3c shows his-
tograms of the ML inference time and network
round-trip data transfer time.

3) Interactive remote collaboration: We de-
veloped a remote collaboration application so that
a local network operator can collaborate in real
time with a remote expert. For example, the local
operator can receive guidance for the process of
replacing the network card by manually manipu-
lating the virtual 3D models of the transport sys-
tem cards and shelf that are generated as 3D im-
ages in the virtual environments of both the oper-
ator and remote expert. The remote edge server
synchronizes the position and orientation of the
digital 3D models for both participants. Fig. 3d
shows an AR image in which the expert utilizes
mid-air drawing of red circles to indicate the lo-
cations of the two latches that must be released
prior to removing the card and demonstrates the
card-replacement procedure to the local operator.
The application also supports real-time voice and
video communication between the two headsets.
Conclusion
In this work, we demonstrate a digital twin of a
network, network elements, and operating envi-
ronment utilizing ML and remote edge computa-
tion. Through interaction in an AR virtual envi-
ronment, the digital twin enabled indoor naviga-
tion, network card failure identification and local-
ization, and remote collaboration over an 86-km
optical link. These innovations demonstrate the
potential of AR and ML in network management
and maintenance. (Supplemental video[15])
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