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Abstract We compare model-centric and data-centric machine learning (ML) approaches to address
the issue of insufficient training data for ML-based failure identification. The results suggest that a data-
centric approach can improve classification accuracy by up to 7.1% on under-represented failures, albeit

at a higher computational cost. ©2023 The Author(s)

Introduction

Failure management has emerged as one of the
key use-cases for machine learning (ML) appli-
cations in optical networks!-8/, which have been
extensively investigated over the past few years.
Traditional ML is mostly used in existing ap-
proaches, which usually revolves around model-
centric techniques in which the “best” model for
a given dataset is produced. However, in the
applied ML research, there has been a recent
shift in focus towards data-centric ML which in-
volves a systematic and algorithmic increase in
the quantity and/or quality of the training dataset
for a given model. Data augmentation, a data-
centric approach, has been investigated in recent
workslh to improve ML-based failure manage-
ment in optical networks. Yet, none of them has
provided a direct comparison to its counterpart
model-centric approaches in terms of classifica-
tion accuracy and computational cost. Therefore,
it is not possible to say which approach is supe-
rior when applied to optical networks, particularly
for failure management.

This paper aims to fill that research gap by
providing a direct comparison between model-
centric and data-centric approaches for dealing
with the imbalanced training problem in ML-based
soft-failure cause identification, which is a typical
use-case within failure management. Imbalanced
training is very common in failure cause identifica-
tion because different failures occur with different
frequencies. This results in an unequal number
of observations for each failure within the train-
ing dataset and, thus, training on such datasets
results in a comparatively poor performance on
less frequent failure classes. To address this
issue, in the model-centric approach, we modi-
fied the loss function of a neural network, and in

the data-centric approach, using SMOTE-TOMEK
technique, we generated synthetic data by uti-
lizing the experimental data. To the best of our
knowledge, these specific approaches have been
investigated for the first time in the context of fail-
ure identification in optical networks. The results
obtained on these approaches show that a data-
centric approach may perform better in classifica-
tion, though at the expense of higher computa-
tional cost.

Experimental Testbed Setup

For this study, we collected data from an ex-
perimental testbed, shown in Fig. [{} It con-
sisted of a single link carrying a 100 Gb/s co-
herent signal traversing over four spans, each
80 km long. The power attenuation experienced
along the fiber was compensated using a series of
Erbium-doped fiber amplifiers (EDFAs). A band-
width variable-wavelength selective switch (BV-
WSS) was placed at the end of span-2 to em-
ulate different soft-failures. Tab. [l lists the fail-
ures that have been considered, including the as-
signed labels and the corresponding system con-
figurations.

Tab. 1: Considered soft-failures

Filter Attenuation Central
Label Soft-Failure Bandwith (dB) Frequency
(GHz) (THz)
SFo Filter Tightening 26 0 192.3
SF, Attenuation 37.5 6 192.3
Filter Tightening +
S¥2 Attenuation 26 6 1923
Filter Tightening +
SF3 Filter Shift 26 0 192.32
SF, Filter Shift 37.5 0 192.32

We collected coherent receiver data, specifi-
cally the optical signal-to-noise ratio (OSNR) and
bit error rate (BER). During normal operation, the
central frequency (fc) of the BV-WSS was 192.3
THz, while its (extra) attenuation and bandwidth
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Fig. 1: Experimental testbed setup

were 0 dB and 37.5 GHz, respectively. Removing
duplicate samples created an imbalanced distri-
bution of failure classes (SFy, SF4, SF», SF3, and
SF,) in the training dataset with 143, 98, 634, 164,
and 208 samples, respectively, making it suitable
for this study.

Model-Centric vs. Data-Centric Approaches
To address the problem of imbalanced failure
classes, we investigated focal loss and SMOTE-
TOMEK as reference model-centric and data-
centric approaches, respectively.

A) Focal Loss

Focal loss (FL)Y is a modified version of the
cross-entropy (CE) loss which is a commonly
used loss function in ML for classification prob-
lems like soft-failure cause identification. The CE
loss for multi-class classification is given as

N—-1
CE(p,y) =— Y yilog(pi), (1)
=0

where N is the number of classes i.e., 5 in this
case, p; is the predicted probability for class i and
y; is the ground truth label for class i (1 if the sam-
ple belongs to class i, and 0 otherwise). For the
true (actual) class ¢, Eq. can be expressed as

CE(p) = —log(pt), (2)

where p, is the predicted probability for the true
class t. If we modulate CE loss in Eq. using
(1 — p¢)” term in which ~ is a focusing parameter,
then the resultant loss function is the FL function,
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Fig. 2: Focal loss vs. predicted probability for the true class

given as

FL(p:) = —(1 —p:)” log(pt). (3)

Fig. [2 shows the FL as a function of predicted
probability for different v values, where v = 0 cor-
responds to CE loss function. A sample is con-
sidered as well-classified if p, > 0.5, and all such
samples fall in the blue shaded region highlighted
in Fig. [2l For imbalanced training datasets, most
of the samples belong to the majority classes. As
there are enough samples from these classes,
the ML model can learn the underlying patterns
well and, therefore, classify these failures accu-
rately. But, for the minority classes, there are
comparatively fewer samples, which makes it dif-
ficult for the ML model to learn their underlying
patterns. This is because the overall training loss
is dominated by the samples from the majority
classes, which are typically well-classified. As a
result, the ML classifier does not perform as well
on minority classes as it does on majority classes.

The modulating factor (controlled by ~) down-
weights the contribution of well-classified sam-
ples and focuses more on hard-to-classify sam-
ples which are usually from minority classes. For
a given dataset, a suitable value of v can be tuned
and in our case, v = 2 has been used.

B) SMOTE-TOMEK

SMOTE-TOMEK®! is a combination of two differ-
ent approaches i.e., synthetic minority oversam-
pling technique (SMOTE)® and TOMEK-linkst'%.
SMOTE generates synthetic samples of minority
classes by interpolation between a randomly se-
lected sample from the minority class and its ran-
domly selected nearest neighbor from the same
class. To reduce the number of misclassifications,
SMOTE is followed by the identification and re-
moval of TOMEK links (i.e., pairs of samples that
are closest to each other but belong to different
classes). Hence, it is a hybrid approach that com-
bines over- and under-sampling, and the process
is repeated until the desired proportion of minority
class samples is obtained.

Results and Discussion
A neural network (NN) was chosen as the ML

classifier for this investigation. It consisted of five
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Fig. 3: Results on test dataset for each failure class in terms of F1-Score

layers in total: an input layer with 2 neurons, three
hidden layers with 183, 186, and 63 neurons, and
an output layer with 5 neurons. tanh was used
as an activation function in the hidden layers,
and softmax was used in the output layer. The
dropout rate was 0.05456, the learning rate was
0.002574, and the batch size was 8. All these hy-
perparameters were tuned using Bayesian Opti-
mization. This NN was used as a baseline against
which the performance of model-centric and data-
centric approaches was compared.

Fig. [Bshows the results on test dataset for each
soft-failure in terms of F1-score, which is one of
the appropriate evaluation metrics in the case of
imbalanced datasets. In our training dataset, SF,
SF;, and SF3; have BER and OSNR values in
the same range, making them inseparable, result-
ing in a comparatively poor performance on these
three failure classes. Moreover, these three fail-
ures have fewer samples than SFs; and SF .

As it is clear from Fig. a significant per-
formance improvement on these minority classes
has been achieved using SMOTE-TOMEK. F1-
score improved from 0.842 to 0.87 for SF( (2.8%
improvement), from 0.886 to 0.957 for SF; (7.1%
improvement), and from 0.884 to 0.891 for SF;
(0.7% improvement) with no negative impact on
majority classes (SF, and SF,). In contrast,
with focal loss, NN failed to improve overall per-
formance on minority failure classes, suggest-
ing that a data-centric approach may outperform
model-centric approaches in this scenario. How-
ever, this only describes one aspect of the perfor-
mance. In order to have a complete comparison,
we considered performance in terms of training
and computational time as well. Tab. [2 shows
the average training time over 100 training itera-
tions (not epochs) as well as computational time
on a Intel(R) Core(TM) i7-12700H @ 2.30 GHz
with NVIDIA GeForce RTX 3060 Laptop GPU. It

should be noted that computational time is only
relevant to the SMOTE-TOMEK where we modi-
fied the training datasets. The impact of modify-
ing the loss function reflects already in the training
time, and additional computation is not required.

Tab. 2: Computational cost comparison

Computational | Average Training Total
Time (s) Time (s) Time (s)
Baseline Model N/A 19.62 19.62
Focal Loss N/A 21.71 21.71
SMOTE-Tomek 391 x 1073 31.82 31.82391

The average training time for baseline NN was
19.62 seconds, which increased slightly with the
modification of loss function (i.e., focal loss).
However, with the SMOTE-TOMEK approach, we
increased both the quality (as indicated by the im-
proved F1-scores) and the quantity (2.53-fold in-
crease in this case) of data by adding synthetic
samples. Due to this increase in training dataset
size, the longer time was expected as now NN
has to deal with many more samples during each
training epoch. SMOTE-TOMEK’s computational
time was around 391 x 10~3 seconds, which is
insignificant as compared to its training time.
Conclusions
We investigated the potential of data-centric ML
against model-centric ML for addressing the is-
sue of insufficient data for some failures within the
training dataset for ML-based soft-failure cause
identification. The obtained results indicate that
a data-centric approach can significantly improve
classification accuracy on under-represented fail-
ure classes with an improvement of up to 7.1%
being observed. However, this improvement is
accomplished at the expense of longer computa-
tional and training times. Based on the scenario
and acceptable trade-offs, the most suitable ap-
proach can be chosen.
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