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Abstract We propose a semi-supervised OFE-VIME model for failure detection in optical networks with 

limited labeled data, which achieves detection F1 score and accuracy of 0.951 and 0.949, false negative 

and false positive rates of 0.018 and 0.085 at a labeled data ratio of 3.85%. ©2023 The Author(s) 

Introduction 

Failure detection is a key technology to ensure 

optical network reliability and quality of service 

(QoS) [1]. In the early stages, optical network 

failure detection (ON-FD) technology set 

thresholds based on manual experience, which 

was difficult to adapt to large-scale and dynamic 

optical networks [2]. With the development of 

artificial intelligence technology, data-driven 

supervised machine learning has become a 

popular research topic in the field of ON-FD due 

to its ability to effectively mine potential patterns 

within data [3-5]. Nevertheless, it is difficult for 

acquiring sufficient labeled data owing to the high 

cost of manual data labeling, the long period 

needed for labeling data, and the low failure rate, 

and training models with limited labeled data 

usually affects the detection performance of the 

model [6]. Conversely, telemetry has significantly 

increased the reporting speed of optical network 

nodes, reaching the second-level reporting, and 

has generated a substantial quantity of unlabeled 

data [7]. Regrettably, supervised learning 

algorithms cannot leverage unlabeled data. 

Therefore, in the case of given limited labeled 

data, how to effectively use a large number of 

unlabeled real data to improve failure detection 

performance is the key problem of ON-FD. 

Semi-supervised algorithm can create the 

best global decision boundary from a large 

number of labeled data and unlabeled data, 

which provides a solution for the utilization of 

limited labeled data and large amount of 

unlabeled data in optical network [8]. Value 

Imputation and Mask Estimation (VIME) based 

on a semi-supervised learning framework, has 

been proposed as a novel inference method for 

tabular data [9]. The algorithm can support 

tabular data, and can fully utilize the limited 

labeled data and large amount of unlabeled data 

in optical network for model training. 

In this paper, an OFE-VIME semi-supervised 

learning model is proposed for failure detection 

under limited labeled data. Open Automated 

Feature Engineering (OFE) algorithm is used for 

automatic expansion of features [10], and VIME 

model is used to improve the performance of 

failure detection under limited labeled data by 

using a large amount of unlabeled data. Typical 

evaluation metrics are used to evaluate the 

detection performance of the proposed model, 

and the effectiveness of failure detection under 

limited data labels is verified on real optical 

network dataset. Meanwhile, to explore the 

learning ability of OFE-VIME model to unlabeled 

data, the influence of the amount of unlabeled 

data on the performance of the detection model 

is studied. Additionally, we leverage t-SNE 

 
Fig. 1: ON-FD scenario based on data-driven AI algorithm: (a) Data collection; (b) Data annotation; (c) Supervised model; 

(d) Unsupervised model; (e) Semi-supervised OFE-VIME model. 
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visualization techniques to explore the detection 

mechanism of proposed model [11]. 

ON-FD Background 

The ON-FD based on a data-driven AI is shown 

in Fig. 1. The first stage is data pre-processing. 

As shown in Fig. 1(a), a large number of 

unlabeled data are obtained based on telemetry 

technology. Fig. 1(b) shows the process of 

identifying failure labels by manual method. It is 

usually time-consuming and expensive to mark 

the data through regular inspection and manual 

experience. Furthermore, due to the low failure 

rate of optical networks equipment, a limited 

amount of labeled data is available, which makes 

it both scarce and costly. Limited labeled data 

usually limit the detection performance of 

supervised learning algorithms (Fig. 1(c)), 

because supervised algorithms usually need a 

certain amount of labeled data for training. The 

unsupervised algorithm does not need labels in 

the learning process (Fig. 1(d)), but unsupervised 

algorithms usually need prior assumptions to 

understand the data distribution, which will affect 

the detection performance of unsupervised 

algorithms if the data distribution in optical 

networks is not clear. 

Therefore, aiming at the limited labeled data 

and a large number of unlabeled data scenes 

obtained by optical network equipment, this 

paper proposes a semi-supervised learning 

method for failure detection under limited data 

(Fig. 1(e)). This method can make full use of 

limited labeled data to extract prior knowledge, 

and learn more comprehensive decision 

boundaries based on limited labeled data and 

unlabeled data, thus improving the detection 

performance under limited labeled data. 

OFE-VIME Semi-Supervise ON-FD Model 

The OFE-VIME semi-supervised learning model 

is illustrated in Fig. 2, and the details of each 

component are elaborated below. 

OFE. As shown in Fig. 2(a), this method uses 

an expansion-reduction framework with feature 

enhancement to measure the effectiveness of 

candidate features. Additionally, a two-stage 

filtering method is employed to reduce 

computational and memory burdens while 

ensuring precise and rapid feature selection. 

Pretext Generator. The module uses a Mask 

generator to randomly generate multiple sets of 

mask data, which is used to increase data 

diversity and improve model robustness and 

generalization performance. These sets of mask 

data are then combined with the unlabeled data 

features to form multiple sets of Corrupted 

features. The process is illustrated in Fig. 2(b). 

Encoder. As illustrated in Fig. 2(c), this 

module utilizes an encoder to extract deep 

representations from the labeled data features. 

Additionally, it also extracts deep representations 

of the corrupted features generated by the pretext 

generator module. 

Predictor. As shown in Fig. 2(d), this part is 

the core of semi-supervised learning model. In 

the training stage, the encoder extracts features 

from the labeled data and the unlabeled data, 

obtaining supervised loss and consistency loss 

respectively, and the total loss is shown in Eq. 

(1), where ℒ𝑠  and ℒ𝑢  are supervised loss and 

consistency loss respectively. For the labeled 

data, the encoder extracts the features, uses the 

extracted features for predictor evaluation, 

compares the real labels with the predicted 

results, and calculates the supervised loss as 

shown in Eq. (2). For unlabeled data, the encoder 

extracts features from different data, and the 

extracted features are used for predictor 

evaluation, and different output results are 

compared to calculate the consistency loss of 

different output results, as shown in Eq. (3). 

ℒfinal  ℒ𝑠  𝛽 ⋅ ℒ𝑢 (1) 

ℒ𝑠  𝔼 𝑥,𝑦 ∼𝑝𝑋𝑌
[𝑙𝑠 𝑦, 𝑓𝑒 𝑥  ] (2) 

ℒ𝑢  𝔼𝑥∼𝑝𝑋,𝑚∼𝑝𝑚,�̃�∼𝑔𝑚 𝑥,𝑚 [ 𝑓𝑒 �̃� − 𝑓𝑒 𝑥  
2] (3) 

Experimental Setup and Results 

The experimental data comes from the optical 

backbone networks data in the real network, and 

its total data is 38082. The number of samples 

used for training is 26,000, and the number of 

 
Fig. 1: The framework of OFE-VIME semi-supervised learning model: (a) OFE; (b) Pretext generator; (c) Encoder; (d) Predictor. 
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samples used for testing is 12,082. Among the 

training samples, there are 1,000 labeled 

samples and 25,000 unlabeled samples, and the 

ratio of labeled data is 3.85%. 

During the training process of the model, the 

loss function is shown in Fig. 3(a), and the curves 

of the total loss function and the two sub-loss 

functions are gradually parallel to the X-axis, 

indicating that the model converges well. Fig. 3(b) 

shows the accuracy, F1, false positive rate 

(FPR), false negative rate (FNR), and confusion 

matrix of the proposed OFE-VIME model on the 

test data. Compared with VIME model, the 

detection metrics of the proposed OFE-VIME 

model have been improved. 

Moreover, to evaluate the performance of 

OFE-VIME model, the detection performance of 

typical unsupervised and supervised models with 

limited labeled data is compared and analyzed. 

F1 score and accuracy are used to evaluate the 

model performance, and the results are plotted 

on the scatter plot, as shown in Fig. 3(c). The 

closer the points in the scatter plot are to the 

upper right corner, the better the detection 

performance of the model. From Fig. 3(c), it can 

be concluded that compared with the typical 

supervised and unsupervised algorithms, the 

proposed OFE-VIME model has the best 

accuracy and F1 score, which shows that the 

proposed semi-supervised OFE-VIME model can 

achieve better detection performance in limited 

labeled data scenarios. 

To explore the influence of unlabeled data on 

the detection performance of semi-supervised 

OFE-VIME model, we have carried out a series 

of experiments to increase the unlabeled sample 

data from 5,000 to 25,000, and its detection 

performance index are shown in Fig. 3(d). As can 

be seen from Fig. 3(d), with the increase of the 

number of unlabeled samples, the F1 score and 

accuracy of detection gradually increase. When 

the number of unlabeled samples increases to 

25,000, the F1 score and accuracy of detection 

are 0.951 and 0.949, and the false positive rate 

and false negative rate are 0.085 and 0.018, 

respectively. Therefore, it can be concluded that 

the proposed OFE-VIME model improves the 

detection performance of the model under limited 

labeled data by using unlabeled samples. 

Then, the principle of semi-supervised OFE-

VIME model for failure detection is explored. After 

t-SNE visualization, the original data (left) and the 

deep feature representation based on OFE-VIME 

output (right) are obtained, as shown in Fig. 3(e). 

It can be concluded from Fig. 3(e) that the normal 

sample and the failure sample in the original data 

coincide, while the failure sample and the normal 

sample are separated in the deep representation 

obtained by the OFE-VIME model, which is a 

positive signal of failure detection. Therefore, it 

can be concluded that the OFE-VIME-based 

model is effective in enhancing the distinguishing 

ability of learning features. 

Conclusions 

This paper proposes a semi-supervised OFE-

VIME model that is used for failure detection with 

limited labeled data. In the training stage, the 

scheme uses labeled and unlabeled data for 

training where the ratio of labeled data is 3.85%, 

and the detection F1 score and accuracy on the 

test data reach 0.951 and 0.949, and the FPR 

and FNR are 0.085 and 0.018 respectively. 

Moreover, the influence of the amount of 

unlabeled data on the detection performance of 

OFE-VIME model and the failure detection 

principle of OFE-VIME model are analysed. 
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Fig. 3: (a) Loss function for the model; (b) Performance metrics for the model; (c) F1 and accuracy of various types of models; 

(d) Performance of model with varying amounts of unlabeled data; (e) Principle of model through t-SNE visualizations. 
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