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Abstract For the first time, multi-task learning is proposed to improve the flexibility of NN-based equal-
izers in coherent systems. A “single” NN-based equalizer improves Q-factor by up to 4 dB compared to
CDC, without re-training, even with variations in launch power, symbol rate, or transmission distance.

Introduction
The demand for high-speed data transmission
keeps increasing due to upcoming technologies
(6G[1], etc.). Coherent optical systems have
emerged as a key solution to meet this demand.
Nonetheless, the presence of linear and espe-
cially nonlinear distortions in fiber-optic systems
limits the achievable information rates[2]–[4]. Var-
ious digital signal processing (DSP) techniques
have been proposed for nonlinear effects miti-
gation in long-haul systems[3]. Neural networks
(NNs) have recently emerged as an effective al-
ternative for channel equalization: the NNs have
demonstrated excellent capability to approximate
the inverse of the optical channel transfer func-
tion, potentially outperforming conventional DSP
approaches[5]–[7]. However, generalizability re-
mains one of the main challenges of NN-based
equalizers and attracts more attention[8]–[10]. Due
to different values of accumulated chromatic dis-
persion (CD)[11], or the presence of channel dis-
tortion, the equalizers in the receiver or transmit-
ter require reconfiguration and must be adjustable
to compensate for the variation of impairments as
the channel characteristics change.

In this work, multi-task learning (MTL)[12] is pro-
posed to calibrate the NN-based equalizer used
for different transmission conditions in coherent
systems. MTL leverages shared representations
to enhance the adaptability of NN-based equal-
izers across different system configurations and
optical impairments. This approach does not re-
quire re-training or additional data when the chan-
nel conditions change. Our results demonstrate
the effectiveness of an MTL-based NN equalizer,
which not only improves the equalization perfor-
mance but also works efficiently in different trans-
mission regimes and scenarios, leading to more
generalizable and flexible solutions for NN-based
nonlinear transmission effect mitigation.

Multi-Task Learning for NN-based Equalizers
Single Task Learning (STL) is a commonly used
approach to train NNs. STL refers to the train-
ing in which the NN learns the representation of
the function to provide the output of a “specific”
task[12]. One advantage of STL is that it allows
the NN to focus solely on a specific task, usu-
ally leading to very good performance in that task.
However, the NN may behave poorly when ap-
plied to different tasks (e.g., when the transmis-
sion scenario of interest is not included in the ini-
tial training dataset). As shown in Fig. 1b, if STL
is used for channel equalization in different trans-
mission scenarios, multiple NN models are usu-
ally required to provide acceptable performance.
In MTL, the NN is trained with multiple datasets
from multiple related tasks. In this case, the com-
mon representations learned from different but
related tasks are shared[12],[13]. As depicted in
Fig. 1c, MTL enables a single NN to equalize the
signal in different ranges of launch power, sym-
bol rate, and transmission distance by the joint
training on the datasets from different transmis-
sion scenarios. MTL allows the NN to general-
ize better by using the domain-specific informa-
tion contained in the different related tasks[12].

Besides the generalization feature enabled by
the MTL, it reduces hardware costs. In fact, the
shared weights are fixed, which results in the sim-
plification of the multipliers[11]. However, MTL can
also lead to some disadvantages compared to the
STL. Firstly, there is a trade-off between the per-
formance of individual tasks and the overall per-
formance of the equalizer. Secondly, the degree
of information sharing between tasks has to be
carefully controlled. Too much sharing can cause
a negative information transfer, resulting in perfor-
mance degradation for each task[13].

In this work, we investigate the performance
of NN-based equalizers using MTL where a sin-
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Fig. 1: a) Equalizer architecture with 4-layer biLSTM and a dense layer; b) STL: multiple models are required for multiple
transmission scenarios; c) MTL: only one model is required for multiple transmission scenarios.

gle NN, without re-training, is potentially capa-
ble of recovering the transmitted symbol indepen-
dently of the specific parameters of the transmis-
sion systems. The considered transmission setup
is altered by changing the symbol rate (RS) and
launch power (P ) of data channels and the trans-
mission distance (number of spans, NSpan). For
the MTL, the NN is trained with different datasets
resulting from the combination of different trans-
mission setups (to share the weights and biases).
Numerical Setup
The dataset was obtained by numerical simula-
tion assuming the transmission of a single 16-
QAM dual-polarization channel along the stan-
dard single-mode fiber (SSMF). The signal prop-
agation through the fiber was represented by a
generalized Manakov equation using the GPU-
accelerated split-step Fourier method[14]. The
SSMF is characterized by the effective nonlinear-
ity coefficient γ = 1.2 (W· km)−1, chromatic dis-
persion coefficient D = 16.8 ps/(nm·km), and at-
tenuation parameter α = 0.21 dB/km. At the end
of each fiber span, the optical fiber losses were
compensated by an erbium-doped fiber amplifier
with a noise figure of 4.5 dB. Downsampling and
CD compensation (CDC) were performed on the
receiver end. Afterwards, the received symbols
were normalized and used as inputs of the NN.
Methodology
The NN architecture, depicted in Fig. 1a, con-
tains a stack of four bidirectional-Long Short-Term
Memory (biLSTM) layers with 100 hidden units
in each layer coupled with a dense output layer
of 2 neurons to deliver the real and imaginary
values for the X-polarization. The biLSTM was
selected because it outperformed other types of
NNs when used for nonlinear compensation[7],[15].
The model took four input features resulting from
the in-phase and quadrature components of the
complex signal (XI , XQ, YI , and YQ) where XI +

jXQ and YI + jYQ were the signals in the X and
Y polarizations, respectively. A set of 141 input
symbols was fed to the NN to recover one sym-
bol at the output. A new set of synthetic data of
size 218 was randomly created with different sys-
tem parameters and used in each training epoch
to allow the model to learn different transmission
scenarios. The entire training was carried out with
a mini-batch size of 2000, and a learning rate of
0.001. The mean square error (MSE) loss esti-
mator and the classical Adam algorithm[16] were
applied when training the weights and biases.

The transmission scenarios include RS ranging
from 30 to 70 GBd, number of spans ranging be-
tween 10 and 50 (with fixed 50 km span length),
and launch power ranging between -1 and 5 dBm.
The NNs were trained with MTL or STL as follows:

1. MTL trained for 1000 epochs with datasets
including different NSpan, but fixed RS =
40 GBd and P = 5 dBm.

2. MTL trained for 1000 epochs with datasets
including different P , but fixed NSpan = 50
and RS = 40 GBd1.

3. MTL trained for 1000 epochs with datasets
including different RS but fixed NSpan = 50
and P = 5 dBm.

4. MTL trained for 1200 epochs with datasets
including different combinations of NSpan,
RS , and P . This NN is referred to as the “Uni-
versal model”2.

5. STL (without MTL) trained for 1000 epochs
with fixed parameters: RS = 40 GBd,
NSpan = 50 and P = 5 dBm.

1This model has one extra input feature, which is the launch
power. The model learns the data during the training using
a normalized launch power. Therefore, it could not learn to
generalize well without knowing the actual launch power.

2Here, the values of RS and NSpan are randomly selected
from the list of possible baud rate values with 5 GBd increment
and the list of span number with the increments of 5 spans,
respectively, to decrease the possible number of combinations
for the NN’s learning.
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Fig. 2: Q-factor resulting from using MTL (orange and red) and STL model (blue) in the following test cases; a) when the
transmission distance changes but the launch power and symbol rate are set to 5 dBm and 40 GBd, respectively; b) when the

launch power changes but the number of span and symbol rate are set to 50 and 40 GBd, respectively; c) when the symbol rate
changes but the number of spans and launch power are set to 50 and 5 dBm, respectively.

Results and Discussion
We considered MTL for multiple symbol rates,
transmission distances, and launch powers. To
evaluate equalization performance and generaliz-
ability, the MTL models were compared to CDC
and the STL model trained with a fixed dataset.

Variation of transmission distance: Fig. 2a
shows the optical performance for different
reaches considering a fixed launch power of
5 dBm and a signal baud rate of 40 GBd. The
STL model performed the best when NSpan

was 50 (because it was trained for this specific
transmission scenario), significantly outperform-
ing the remaining approaches. However, its
performance was significantly impacted in the
shorter reaches as it could not generalize. On the
other hand, the MTL trained with different Nspan

showed much better performance than STL for
the shorter reaches, achieving a better Q-factor
(about 3 dB Q-factor improvement) than CDC
only for all considered scenarios. The universal
MTL model also showed better performance than
the CDC alone, leading to a maximum Q-factor
improvement of about 2.5 dB at 50×50 km.

Variation of launch powers: Fig. 2b depicts the
Q-factor as a function of the launch power for a
fixed RS of 40 GBd and transmission distance of
50×50 km. Again, the STL model showed the
best gain for launch powers close to the one it was
trained with (5 dBm), but revealed quite poor re-
sults for the remaining launch powers. In contrast,
the universal MTL model enabled a Q-factor im-
provement exceeding 2 dB for the most relevant
launch powers. The MTL, trained with various P

but fixed NSPAN and RS , revealed the best per-
formance, enabling a Q-factor improvement ex-
ceeding 4 dB for the most relevant launch pow-
ers. Interestingly, we can see that, at 5 dBm, the
MTL outperformed STL. The reason for this may
be that the STL is overfitting and cannot adapt

to the unseen test data as effectively as the MTL
model, which is more generalized. Ref.[17] sup-
ported the claim that a more generalized model
can perform better.

Variation of symbol rates: Fig. 2c illustrates the
Q-factor as a function of the data signal baud
rate for a fixed transmission distance and launch
power of 50×50 km and 5 dBm, respectively. STL
led to very good results for the 40 GBd transmis-
sion scenario (training scenario) but showed very
poor generalization capability. The MTL, trained
with multiple RS but fixed NSpan and P , enabled
a Q-factor improvement of up to 4.5 dB with re-
spect to the CDC only, whereas the universal MTL
model showed up to 2.5 dB improvement. The
MTL provided a good gain in most cases.

The aforementioned results show that, al-
though STL may lead to outstanding performance
in specific transmission conditions, it is not suit-
able for real-world system application because it
lacks the adaptability to dynamic optical network
parameters. MTL overcomes this limitation, al-
lowing the equalizer to be more flexible, but at the
cost of small performance degradation compared
to models trained only for a specific task.
Conclusions
Multi-task learning is proposed to allow a “sin-
gle” NN-based equalizer, without re-training, to
recover received symbols when the transmission
scenarios change. The results showed that the
MTL can provide up to 4 dB improvement in Q-
factor with respect to CDC alone even if the trans-
mission distance, launch power, and symbol rate
vary, thus highlighting the adaptability of the MTL
NN-based equalizer to the real-world dynamic op-
tical network.
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