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Abstract We propose a practical and generalizable PNPAConv-based neural structure to adapt
network-scale QoT estimation. The performance log10 MSE achieves −1.982 and −1.506 over JPN12
and EURO28, respectively. ©2023 The Author(s)

Introduction

Network-scale QoT estimation is essential in net-
work planning, transport system evolution, and
fault diagnosis, etc. for providers. Analytical mod-
els are computationally intensive and limited to
scenarios. In contrast, neural networks easily
capture implicit functional relationships, thus neu-
ral model-based QoT estimation has been exten-
sively studied. Existing methods[1]–[3] mainly use
a fully connected neural structure as an estima-
tor, and its essence is to proximate the Gaussian
noise (GN) model or the generalized Gaussian
noise (GGN) model. In addition, leveraging a sim-
ple fully connected structure makes the estima-
tion model skip topology and routing issues, thus
lacking universality and practicability.

In this work, we aim to find a paradigm: the in-
puts are service requests (i.e., lightpaths to be es-
tablished) of the whole optical transport network
(OTN), and the QoT information (such as GSNR)
of each node can be directly inferred through the
trained model. To this end, a kind of modeling
is worth to be considered: the signal propagates
along a certain route over a topology. We have
found that an advanced message-passing graph
convolutional network (MP-GCN)[4] most closely
matches the problems we expect to solve[5].

In light of this, we modify the principal neighbor-
hood aggregation convolution (PNAConv ) layer[6]

which is a variant of MP-GCNs achieving state-
of-the-art performance in many tasks, and pro-
pose principal neighborhood propagation aggre-
gation convolution (PNPAConv ) layer to adapt the
learning logic of the QoT estimation problem over
OTNs. The existing GCN-based QoT estimation[7]

uses basic GCN and thereby suffers scaling prob-
lem. We evaluate the performance of PNPAConv -
based model with services in C-band. The esti-
mation log10 MSE can achieve −1.982 and −1.506

(with from 0.01 dB to 0.1 dB errors) over JPN12 [8]

and EURO28[9], respectively. We additionally ver-
ify the practicability and generalization ability of

PNPAConv through multiple trainings/testings.
Graph Neural Network and Modeling
The existing QoT estimation neural models can
be referred to as the unfolded structure[2] and
the cascaded structure[1],[10], which are shown in
Fig. 1 (a) and (b), respectively. The unfolded
structure requires the feeding status of each edge
(i.e., optical multiplex section (OMS)) transmitting
side, which is essentially a data leak and not fea-
sible. The cascaded structure is reasonable, how-
ever, it requires multiple levels of cascading to
emulate a lightpath, and it cannot adapt to topolo-
gies with bifurcations.

As shown in Fig. 1 (c), we expect to estimate
the whole network QoT in a practical way. The
inputs are service requests, and the outputs are
GSNRs on each node. A service request can be
described by a tensor Rn×n×∗×∗, where R(i, j, :

, :) refers to the channels transmitted by node
i and received by node j, including information
such as transmit power p (the consideration of
transceivers is omitted for modeling simplicity),
center wavelength f , bandwidth bw, and baud
rate br. We map the requests into node features
and edge features through calculated routes. A
node feature vi consists of R(i, :, p), R(:, i, p),
and other necessary information (e.g., ROADM-
specific structure and settings). In an edge fea-
ture, a spectral channel utility is described as a
triad < fm, bwm, brm >, and the optical span,
fiber information, and noise figure of an amplifier,
etc. are also included. Although these features
are all numbers, they are not all continuous vari-
ables. To make the neural model training stable,
we use two tunable encoders to realize the em-
beddings of node and edge features, to achieve
dimension reduction.

The (per-service) GSNR of a node i can be re-
garded as the function of the transmission sta-
tus of all the lightpaths along which i is the tar-
get[5],[11],[12]. However, it is computationally ex-
pensive and prone to overfitting that directly uses
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Fig. 1: Recent vs. the proposed PNPAConv -based paradigm for OTN QoT estimation .

the transmission status of multiple whole light-
paths for each node in model training. There-
fore, inspired by PNAConv paradigm, we decom-
pose network-scale training into local training it-
erations, so that the local transmission status is
finally propagated to the entire network. At each
iteration, the hidden representation hi of the node
i is updated so that it captures the influence of the
learned transmission status[13].

We find the original PNAConv paradigm is in-
sufficiently effective. The reason is that PNAConv
supposes an additive aggregation of the neigh-
bors’ influence on node i. In contrast, in a trans-
mission status regression task, the influence of
the neighbor nodes N(i) and connected edges
on the node i is directional. Considering the dif-
ference between the task intentions, we modify
the aggregation idea of the original PNAConv and
propose PNPAConv.

Eq. 1 shows the layer expression of PNPAConv.
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where h
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i is the latent representation at t-

th iteration of node i; Z and U are neural
networks; v̂ and ê are embedded vertex (i.e.,
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is a series of directed

lightpath segments centered at i. The encoders
for embeddings are shown in Eq. 2 and Eq. 3.
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The operation ⊕ is used to integrate local in-

fluence and guarantee the convergence of h, and
it is the tensor product ⊗ of standard deviation-
based aggregation operator σ (in Eq. 5) and at-
tenuation factor A (in Eq. 6).

⊕ = A⊗ σ (4)
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√
ReLU

(
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2
)
+ b (5)
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, δ =
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log (di + 1)

(6)
where d is the degree of the node receiving sig-
nals, and α is a variable parameter.

The loss function is (masked) mean square er-
ror (MSE), as shown in Eq. 7. The masked MSE
refers to only computing final QoTs of services
that terminate at node i.

Loss = MSE
∀i∈V

(
ĥ
(t)
i − gsnri

)
(7)

where ĥ
(t)
i is the output of a decoder which is fed

with h
(t)
i as the input.

Moreover, as shown in the right part of Fig. 1
(c), the PNPACov layers can be multiple. The
number of layers is L which is a function of the
number of OTN network nodes |V |. A gated re-
current unit (GRU) is applied after each layer, to
retain information from previous layers.

Training and Testing
We modified PNAConv function to implement
PNPAConv in torch geometric.nn[14]. The en-
coder/decoder and Z/U are Transformer [15] and
fully connected structures, respectively, and L =

|V |/2. To further reduce the number of param-
eters (i.e., to improve the model efficiency), we
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Fig. 2: Training and testing results for GGN model over JPN12 [(e)(j)(i)] and EURO28 [(f)(h)(j)] topologies.

replace the five-tuples (referring to PNPAConv-
5) with three-tuples (i.e.,

(
ê
(t)
k→i, v̂

(t)
i , ê

(t)
i→j

)
, refer-

ring to PNPAConv-3) for the ⊕ operation. We
compare performance of PNAConv, PNPAConv-
3 and PNPAConv-5, over JPN12 (Fig. 2 (c)) and
EURO28 (Fig. 2 (d)).

The datasets preparation and training/testing
procedures are shown in Fig. 2 (a). The GSNR
calculations follow our previous work[16], using
GNPy (GGN model)[17]. The services generated
over the networks are in C-band 96 channels,
with PM-8QAM and PM-16QAM. To analyze the
model practicability, we adjust the percentage of
the dataset (normalized service intensity I is 1) for
training. In addition, to evaluate the model gener-
alization ability, we train a dataset with a specific
I and test the scenarios with the other I. We use
log10 MSE as the performance metric.

As shown in Fig. 2 (b), we use different colors
to indicate the level of performance. PNPAConv-
5 outperforms PNPAConv-3 and PNAConv, due
to more parameters and adaptive learning struc-
ture, respectively. EURO28 with a larger topol-
ogy deteriorates the model performance. It can
be found that the performance of the PNPAConv -
based model on OTN-scale topologies is effective
in the QoT estimation task. The distributions of
the learned GSNRs (fitting and inference) and the
ground truth are compared in Fig. 2 (e) and Fig. 2
(f). The two distributions almost coincide.

It is more realistic to train the model with fewer
data entries, and this additionally verifies the in-
herent adaptability of the model to the QoT esti-
mation task. As shown in Fig. 2 (g) and Fig. 2
(h), if we consider that log10 MSE less than −1

is sufficiently good, then for a JPN12-scale and
a EURO28-scale network, the performance with
20% and 30% of the training data is acceptable,
respectively.

From Fig. 2 (i) and Fig. 2 (j), it can be seen that

if the training is conducted under a larger I, the
generalization ability of the model on other I is
stronger. The reason is that the model can learn
the estimation of more link status under a larger I
(i.e., different channel distributions in a link). Con-
versely, the model performance becomes unac-
ceptable when training under a smaller I. These
results also suggest the strong generalization
ability of PNPAConv.

Discussion. Q1: Does PNPAConv really in-
cludes any service routes into consideration? The
feature designs for a node and an edge have
already recorded the source-target pairs of the
corresponding services. The directional influ-
ence modeling makes PNPAConv recognize how
the services are transmitted locally, thereby the
network-scale routes are recognized through iter-
ations. In addition, PNPAConv itself can learn the
shortest paths[13]. Q2: Can PNPAConv be ex-
tended to estimate QoT in another scenario? We
have proved that the mechanism for PNPAConv
to complete the QoT estimation task is scenario-
adaptive, thus QoT dataset preparation is the only
requirement for PNPAConv to adapt to a more
complex scenario such as multi-band OTN.
Conclusions
Considering the logic of the OTN-scale QoT esti-
mation, we modified the powerful PNAConv into
PNPAConv for adaptability enhancement. Our
model takes the service requests and routes of
the entire OTN as inputs, and directly infers the
QoT values of the services. The estimation per-
formance log10 MSE achieves −1.982 and −1.506

over JPN12 and EURO28, respectively. The
model still achieves acceptable estimation per-
formance with less training data. In addition,
we demonstrated the generalization ability of the
model under different service intensities. While
using advanced neural models to solve OTN
problems, this paper also reversely promotes the
development of machine learning.
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