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Abstract We present a novel fibre-optic transmission system based on the phase modulation via non-
linear Fourier transform for finite-genus signals with no periodicity constraint, which is achieved through
designing a neural network-based receiver and demonstrate, as a proof of concept, signalling below 7%
HD-FEC BER threshold.

Introduction
The sustained growth of global data traffic and
the quest for high-capacity communication net-
works have spurred significant interest in the de-
velopment of advanced fiber optic communica-
tion systems. Central to the design and analy-
sis of these systems is the Nonlinear Schrodinger
(NLS) equation, which models the interplay be-
tween nonlinear and dispersive effects in opti-
cal signal propagation. This paper presents a
pioneering method that combines the nonlinear
Fourier transform (NFT) for finite-genus solutions1

to the NLS equation and a neural network-based
receiver, where we are able to get rid of the de-
sign deficiencies pertinent to the previously pro-
posed communication systems of such a type.

NFT-based fiber-optic communication methods
are based on the idea of transforming NLS equa-
tion for the signal propagation down the fiber
into linear evolutionary equations inside the non-
linear Fourier domain. NFT-based transmission
harnesses the linearizing transform for the NLS
equation, allowing simultaneously compensating
for dispersion and nonlinearity[1]–[3]. However,
despite the promise that the “conventional” NFT
methods have shown[4], there are several limita-
tions that impact their performance. First, high
computational complexity is a primary challenge
of NFT-based methods[5]. Then, conventional
NFT signals are assumed to be transmitted in the
burst mode with substantial guarding intervals to
avoid cross-talk[4]. Moreover, such systems pro-
vide very little control over signal duration and
bandwidth. And last but not least, the presence
of in-line noise can significantly affect the accu-
racy of the NFT technique, subsequently degrad-

1In the mathematical and physical literature, finite-genus
solutions are often referred to as finite-band or finite-gap solu-
tions.

ing the overall system performance[3].
To deal with these issues, the periodic NFT

(PNFT) has been proposed as an alternative
technique. PNFT approach provides control
over the signal’s duration and bandwidth as well
as reduces the processing window at the re-
ceiver and noise impact[6]. The implementa-
tion of the PNFT-based transmission systems has
been thoroughly investigated using the algebro-
geometric approach[7],[8]. The algebro-geometric
approach is linked to the computationally expen-
sive Riemann theta function[9],[10], which makes
this method rather impractical. As an alternative,
the Riemann-Hilbert Problem (RHP) approach
was proposed[11]. It is based on an analytic fac-
torization problem in the nonlinear Fourier domain
and has a computational complexity that is lin-
early proportional to the number of signal sam-
ples, which allows parallelization for efficient com-
puting[6],[12],[13]. However, the methods mentioned
above were constrained to use the exactly pe-
riodic signals, i.e. each supersymbol was ap-
pended with a cyclic prefix, similarly to coherent
optical OFDM.

In this study, we introduce a fiber optic commu-
nication system based on the NFT for finite-genus
NLS solutions, employing the RHP approach at
Tx to modulate the phases and convolutional neu-
ral networks at Rx to demodulate the symbols.
This methodology circumvents the limitations in-
herent in previous techniques[12],[13]: (i) we have
devised a strategy for signal processing that does
not require exact periodicity of a processed su-
persymbol, and (ii) we have surmounted the con-
straints on signal power and phases variation in-
tervals from Refs.[12],[13]. This work addresses
a proof-of-concept system, wherein we present
our design proposal and provide estimates of its
performance. We reserve an extensive array of



optimization-related inquiries for subsequent re-
search.

Channel model and finite-genus solutions
The governing equation for signal propagation in
an optical fiber is the NLS equation, written as:

iqz −
β2
2
qtt + γ|q|2q = n(t, z), (1)

where q(t, z) denotes the signal envelope, with z
being the coordinate along the optical fiber and
t representing the temporal variable, β2 is the
chromatic dispersion, γ is the nonlinearity coef-
ficient, n(t, z) is the amplified spontaneous emis-
sion noise term.

Utilizing the RHP approach, we construct
genus-N solutions associated with their main
spectrum[13], consisting of points on the complex
upper half-plane {λj ∈ C}Nj=0 and their complex
conjugates. A particular genus-N solution is then
specified by N + 1 real-valued parameters, re-
ferred to as phases ψj , each lying in the interval
[0, 2π), see Refs.[13]–[15] and references therein.

We control the signal’s duration and power by
adjusting the main spectrum. The set of main
spectrum points {λj}Nj=0 determines the frequen-
cies Cf of N + 1 partial nonlinear modes for the
genus-N solution: {Cf

j ∈ R}Nj=0 which are gen-
erally incommensurable. For our system, we pro-
cess the largest period corresponding to the low-
est Cf . To adjust the signal’s power, we manipu-
late Imλj .

As genus-N signals propagate through an op-
tical fiber, the phases of partial nonlinear modes
exhibit a trivial evolution:

ψj(z) = ψj(0) + (Cg
j − 2g0)z, (2)

where z represents the propagation distance and
the constants g0 and {Cg

j ∈ R}Nj=0 are determined
by the main spectrum. This property is exploited
to compensate for the signal’s evolution at the re-
ceiver.

Convolutional neural network-based receiver
The core component of the proposed communi-
cation system is a receiver that relies on convo-
lutional neural networks (CNNs)[14]. CNNs have
demonstrated their effectiveness in processing
signals within the context of NFT systems[16]–[18].
Our receiver processes the signals after their
propagation through an optical fiber, and extracts
the central portion of each supersymbol corre-
sponding to the largest symbol’s period, effec-

tively removing the extension prefixes used to
protect the supersymbols from overlapping/cross-
talk along the propagation. The processed sig-
nal is then fed to the CNN’s input layer, using
128 samples per signal. The goal of the CNN is
then to retrieve the N + 1 phases corresponding
to the partially nonlinear modes embedded within
the genus-N supersymbol.

The neural network architecture we use is sim-
ilar to that from Ref.[14]; it comprises three con-
volutional layers and one fully-connected layer,
Fig. 1. The CNN’s hyperparameters have been
optimized using Bayesian optimization[16],[19] for
the specific symbols used in the transmission sim-
ulations. It turned out that the optimal distribu-
tion of hyperparameters is the same for all power
levels studies and the resulting hyperparameter
values are presented in Table 1. For further de-
tails regarding the implementation of the CNN see
Ref.[14].

Fig. 1: Schematic of the CNN-based receiver used in our
work for soft symbols.

The CNN produces complex-valued outputs
that represent points on the unit circle. This
choice is motivated by the need to ensure the pe-
riodicity of the labels corresponds to the phase
periodicity of the solution. From the given points
on the unit circle, the phases can be unambigu-
ously retrieved.

Filters Kernel size Activation
1 conv. 94 3 tanh
2 conv. 112 17 tanh
3 conv. 145 18 sigmoid

Fully-con. 128 neurons sigmoid

Tab. 1: The hyperparemeters of the receiver CNN in Fig. 1.

Performance estimation
In the fiber-optic communication system illus-
trated in Fig. 2, we employ genus-4 solutions
to the NLS equation (5 nonlinear modes per su-
persymbol). By manipulating the main spectrum
of such solutions we can tune the signal dura-
tion and power, while the phases are used for
data modulation. The following configuration of



Fig. 2: Communication system principal scheme.

the main spectrum λ has been used for N = 4:

λ = {−2 + ai,−1 + ai, ai, 1 + ai, 2 + ai}, (3)

where parameter a defines the power of the sig-
nal. The signal’s duration (the longest period) was
fixed to 1 ns.

Specifically, we implement 16-phase shift key-
ing (16-PSK) modulation for each phase of the
genus-4 solutions (5 phases), thus yielding 5 × 4

bits per supersymbol. To prevent signal over-
lap during propagation, extension prefixes are in-
corporated between supersymbols. To ensure
that the central parts of adjacent signals do not
overlap, we select extension prefixes substantially
larger than required[2],[8]. Each supersymbol ex-
tends the duration of the central part by a factor
of five. These supersymbols are then concate-
nated into lengthy sequences and input into the
system as a single signal.

We investigate the propagation of optical sig-
nals in a system consisting of 15 spans (80 km
each), resulting in an overall system length of
1200 km. The system employs standard single-
mode fibers (SSMF) characterized by dispersion
parameter β2 = −21.7 ps2/km and nonlinear co-
efficient γ = 1.3W−1km−1. An ideal distributed
amplification model is utilized, with noise intro-
duced at the end of each span. The noise power
is expressed as NASE = αLℏνsKTNF , where
α = 0.2 dBm/km is fiber loss, L = 80 km denotes
the span length, ℏνs is photon energy, KT = 1.13,
and NF = 4.5 dB is the noise figure.

For each power level, we evaluate the BER as
a metric for efficiency as a direct count of er-
ror bits within a signal comprising 2 × 104 sym-
bols. The system performance, characterized by
the relationship between BER and signal power,
is depicted in Figure 3. Our results demonstrate
successful data transmission at power levels of
≈−6.3 dBm and ≈−5 dBm below the FEC thresh-
old, with a value of 3.8 × 10−3 and a 7% over-
head[20].

Fig. 3: BER versus signal power (lower axis) and
corresponding values of Imλ (upper red axis). The black
dashed line depicts 7% HD-FEC threshold[20]. The inset

illustrates the symbol’s phase distribution corresponding to
the optimal power level ≈ −6.3 dBm.

Conclusion
Although finite-genus solutions have been em-
ployed as data carriers in previous communica-
tions studies, those systems suffered from addi-
tional constraints imposed on the solution classes
utilized and on phases allowed extent. Our
novel approach, which utilizes CNN for phase re-
trieval at the Rx, relieves the finite-genus signals-
based communications from the limitations of
prior works. The general and adaptable nature
of the proposed methodology makes this system
both efficient and versatile for application in real-
world systems.

Our proof-of-concept research aims to demon-
strate the feasibility of data transmission below
the 7% HD-FEC threshold and to lay the ground-
work for future studies. The presented commu-
nication system can be significantly enhanced
through the following approaches: (1) more ex-
tensive engagement of neural networks not only
for phase retrieval of signals but also for address-
ing system imperfections, such as non-zero gain-
loss profiles and noise, (2) comprehensive opti-
mization of finite-genus solution parameters, in-
cluding genus, main spectrum configuration, and
cyclic extension length, and (3) developing the-
ory for finite-genus solutions applied to the Man-
akov system, which describes data propagation
in optical fibers with two polarizations. Address-
ing these crucial issues requires further investiga-
tion.
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