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Abstract We propose and experimentally demonstrate a model-based deep-learning framework that 

optimizes fiber-terahertz communication system end-to-end, while retaining the conventional single-car-

rier transceiver architecture. Jointly learning of pulse shaping, pre-equalization, digital pre-distortion, 

and transceivers achieves a 1.8-dB sensitivity gain and 4-Gb/s capacity improvement at 209-GHz fiber-

THz system. ©2023 The Author(s) 

Introduction  

Fiber-THz integration in 6G radio access net-

works (RAN) enables broad coverage, and ultra-

reliable low-latency communications [1]. Mean-

while, AI enhances the design and optimization 

of 6G architectures, enabling the automation of 

end-to-end network optimization [2]. AI-powered 

RANs can adapt to network changes, optimize re-

sources, and improve user experience [3].  
The deep learning-based end-to-end (E2E) 

optimization scheme for communication systems 
interprets the transmitter, channel, and receiver 
as an autoencoder (AE) neural network [4]. In the 
AE network, the transmitter (T-ANN) and receiver 
annual neural networks (R-ANN) learn to design 
the transmitted waveform to maximize an achiev-
able information rate (AIR) and address the chan-
nel impairment generate by the surrogate chan-
nel. This intelligent optimization technology has 
been proven to be superior to conventional base-
lines in wireless systems [5]-[7], optical fiber sys-
tems [8]-[10], and fiber-wireless systems [11]. 
However, the E2E schemes [5],[6],[8],[11] implic-
itly optimize the waveform in the “black-box” ANN 
incompatible with conventional communication 
architecture and lack practicality. The model-
based approach [7] designs the T-ANN as a train-
able constellation mapper combined with a train-
able pulse shaping (PS) filter to explicitly interpret 
the optimization and preserve the architecture of 
a conventional single-carrier system. A similar 
method [10] has also been numerically evaluated 
in coherent WDM systems excluding amplifier 
nonlinearity and bit mapping optimization. 

In this work, as shown in Fig. 1, we propose a 

model-based deep learning approach to realize 

bit-level E2E optimization on the fiber-THz inte-

grated system. The E2E framework consists of 

several modules including a bit-to-symbol map-

per, PS filter, digital pre-distortion (DPD), and re-

ceiver. The modules at the transmitter side can 

be directly deployed in the classic single-carrier 

system since the designed T-ANN has the same 

structure as the classic single-carrier modulation 

(SCM). The R-ANN can substitute all the digital 

signal processing (DSP) at the receiver side with 

significant performance enhancement compared 

to conventional DSPs, including a third-order 

Volterra nonlinear equalizer, SCM demodulation, 

and demapper. Experimental results indicate that 

our approach outperforms the conventional SCM 

scheme by over 1.8 dB in receiver sensitivity and 

4 Gbit/s in capacity under the 20% soft-decision 

forward error correction (SD-FEC) bit error rate 

(BER) threshold (2E-2) at the 209-GHz fiber-THz 

integrated system. 

Model-Based E2E Optimization Framework 
As shown in Fig. 2(a), we designed the T-ANN to 
achieve the same procedures as the SCM 
scheme. The trainable components are in light 

blue. Let us denote by B ∈{0, 1}K×N the matrix of 

bits in a transmit block which consists of N base-
band symbols each carrying K bits. The bit matrix 
B is mapped into baseband symbols s by the 
QAM mapping module in the T-ANN. The map-
ping is achieved by 3 hidden layers activated with 
tanh function to produce amplitude-normalized 
symbols. The baseband symbols are upsampled 
and shaped by the PS filter. The modulated trans-
mitted signal can be expressed as  

 
Fig. 1: Diagram of the model-based E2E optimization frame-

work for fiber-wireless integrated system. 
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, ,

ˆ ˆ
real g real imag g imag=  + x s θ s θ  (1) 

where ˆ
reals  and 

îmags  represent the real and imag-

inary part of the upsampled symbols, ,g realθ  and 

,g imagθ  respectively represent the coefficients of 

the PS filter for the real and imaginary part of the 

symbols. To improve resistance to nonlinear dis-

tortions from the amplifiers, the modulated signal 

is pre-emphasized by DPD to generate the final 

transmit signal (Tx) as 
 ( )Tx DPDtanh=  +x x θ x  (2) 

where 
DPDθ  denote the coefficients of a convolu-

tional recognizer on nonlinear patterns. The DPD 

layer applies tanh activated DPD value on the 

modulated signal according to the recognized 
nonlinear pattern. The trained coefficients ,g realθ , 

,g imagθ , and 
DPDθ  can be directly deployed in the 

SCM system. 

In Fig. 2(b), the data-driven ANN-based chan-

nel model (ACM) also has a physics-informed 

structure that contains two tributaries that sepa-

rately simulate the linear and nonlinear re-

sponses of the fiber-THz integrated channel. The 

linear tributary uses a finite impulse response 

(FIR) filter to simulate the channel memory effect. 

The nonlinear tributary uses two ResNet [12] 

blocks, which have a generic architecture shown 

in Fig. 2(d), to learn the nonlinear response of the 

channel. The outputs from the two tributaries are 

added with trainable additive Gaussian noise 

(0, )nθ  to get the predicted received signal (Rx). 

In Fig. 2(c), the R-ANN first uses two match 

filters to extract the real and imaginary infor-

mation from Rx and feeds the information into the 

demapper modules to predict the corresponding 

bits of the middle symbol in s. The demapper 

module has 2 fully-connect layers separately ac-

tivated with tanh and sigmoid functions to compute 

soft bits. For simplicity, we make a hard decision 

on the output soft bits, deciding that soft bits over 

0.5 are “1” and those below 0.5 are “0”. 

Experimental Setup 

The E2E 209 GHz fiber-THz integrated commu-

nication system is shown in Fig. 3. The system 

uses T-ANN learned coefficients to generate the 

Tx signal, which undergoes bit-to-symbol map-

ping, 6x upsampling, PS, and DPD. The Tx data 

is transmitted via a 64 GSa/s digital-to-analog 

converter (DAC), amplified by an electrical ampli-

fier (EA), and modulates the 1550 nm light using 

a Mach-Zehnder modulator (MZM). The resulting 

optical signal is transmitted through 10 km of sin-

gle-mode fiber (SMF) and detected by a photode-

tector (PD). An intermediate frequency signal is 

produced, which is then up-converted to a THz 

signal at 209 GHz using a second-order harmonic 

mixer with a 104.5 GHz local oscillator (LO). A 

pair of horn antennas are used for a 1-meter wire-

less transmission. The received THz signal is 

then amplified by a low-noise amplifier (LNA) and 

down-converted back to intermediate frequency 

(IF) using the second-order harmonic of the 104.5 

GHz LO. The output signal is captured by an 80 

GSa/s analog-to-digital converter (ADC) and de-

coded by the R-ANN. To account for imperfect 

channel modeling, 30% of the Rx and the corre-

sponding bits data is used to fine-tune the R-ANN, 

while the remaining 70% is used to evaluate the 

performance. To encode 5 bits of information into 

a 32QAM SCM signal, we set K = 5 and N = 30, 

and the PS filter length in the T-ANN is chosen to 

match that of the conventional SCM baseline. 

Bayesian optimization algorithm [13] is used to 

explore other hyperparameters in the framework, 

and the optimized parameters appear in Fig. 2. 

During the training and evaluation phase, the 

transmitted bits are generated using different 

 
Fig. 2: Framework structure and parameters of (a) T-ANN, 

(b) Channel Model, (c) R-ANN and (d) ResNet block. 

T-ANN

QAM Mapping 

Nodes: [5,10,10,2] 
Tanh

6× Upsampling

PS & Pre-Eq Filter
Conv. : [55,55]

DPD
Conv. :5

Tanh
Add

Bits Input
Length: 30M = 30·5

Tx Waveform 
Length: 126 points

R-ANN

Waveform Input
Nodes: 66

Soft Bits Output

Match & Post-Eq 
Filter

Conv. : [55,55]

Demapping 
Nodes: [55,5]

Tanh, Sigmoid

(a) (c)ACM

Tx Waveform Input
Nodes: 126

        Noise

Rx Waveform Output
Nodes: 66

Linear 

Conv. : 61

Nonlinear 

ResNetBlocks: 2

Nodes: 66

C
o
n

v.
 

3
2
×

[3
]

N
o
rm

.

T
a

n
h

C
o
n

v.
 

 3
2
×

[3
]

N
o
rm

.

T
a

n
h

A
d

d

ResNet
Block

(b)

(d)

 
Fig. 3: (a) Experimental setup of the model-based E2E fiber-THz communication system, (b) The learned PS filter, (c) The 

frequency response of the PS filter. 
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seeds to prevent the R-ANN from recognizing 

PRBS pattern.  

The baseline conventional scheme generates 

32-QAM symbols and pulse-shapes them with a 

square-root raised-cosine (sRRC) filter, followed 

by 6x upsampling to create the transmitted signal. 

We use additional pre-equalization (Pre-Eq) to 

address the fading effects present in the high-fre-

quency band of the signal. To mitigate linear and 

nonlinear distortions during transmission, we use 

a third-order Volterra nonlinear equalizer (VNE) 

on the received signal [14]. After VNE, the signal 

is demodulated for BER calculation. 

Result and Discussion 

Fig. 4(b) shows that the learned PS filter ensures 

the orthogonality between the real and imaginary 

parts of the symbol. The frequency responses in 

Fig. 4(c) also suggest Pre-Eq ability of the filter. 

We study the performance of the model-

based E2E scheme in the back-to-back with wire-

less delivery (BtB-wireless) case and 10-km fiber-

wireless transmission case. In the BtB-wireless 

case, Fig. 4(a) suggests the E2E scheme has 

strong robustness to nonlinear distortion caused 

by amplifiers under high signal amplitude (Vpp). 

The robustness is supported by the low PAPR of 

the final encoded Tx signal and the shaped con-

stellation in Fig. 4(b)(c). 

Fig. 5 shows the BER performance of two 

schemes in the BtB-wireless case, varying with 

ROP and bitrate. The E2E scheme outperforms 

the baseline, achieving a PD sensitivity gain of 

over 1.75 dB and a capacity improvement of 2.5 

Gbit/s under the SD-FEC threshold. 

Fig. 6 shows the BER performance of two 

schemes varying with ROP and bitrate in the fi-

ber-wireless case. Compared to the baseline, the 

E2E scheme achieves a 4 Gbit/s capacity im-

provement in Fig. 6(a) and a 1.8 dB sensitivity 

gain in Fig. 6(b). 

Conclusion 

Our proposed approach uses model-based deep 

learning to optimize the fiber-THz integrated com-

munication at the bit level, resulting in E2E per-

formance improvements. The optimization frame-

work, which includes the mapper, PS filter, DPD, 

and receiver, is jointly optimized in the E2E feed-

back loop. The neural transmitter ensures com-

patibility with SCM systems. Experimental results 

suggest a 1.8 dB sensitivity gain and a 4 Gbit/s 

capacity gain under the 20% SD-FEC threshold 

compare to the baseline for the 209-GHz fiber-

THz system, which can be well interpreted by the 

optimized modules in our model-based approach.  
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Fig. 4: (a) The BER performances of the baseline and E2E optimization schemes under different Vpp; (b) The PAPR of the 

T-ANN encoded signal, and SCM signals; (c) The E2E optimized bit-to-symbol constellation mapping. (i)(ii) are the AM-AM 

curves and the received constellations of the conventional SCM signal. 
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Fig. 5: The BER performances of the baseline and E2E opti-

mization schemes under different (a) ROPs and (b) Bitrates 

in the BtB-wireless channel condition. 
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Fig. 6: The BER performances of the baseline and E2E opti-

mization schemes under different (a) ROPs and (b) Bitrates 

in the 10-km fiber-wireless channel condition. 
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