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Abstract A self-supervised learning scheme is proposed for neural-network-based perturbative fiber
nonlinearity compensation with a designed proxy task by using phase-conjugated unknown sequences.
The self-supervised trained model can be applied directly to the corresponding dual-polarization system
with no obvious performance penalty compared with the supervised one. ©2023 The Author(s)

Introduction

Fiber nonlinearity has become a major limiting
factor for further improving the capacity of long-
haul coherent optical transmission systems[1].
To overcome this problem, several machine-
learning approaches have been introduced into
fiber nonlinearity compensation (NLC) through
digital signal processing (DSP) over the last few
years[2]–[13]. On this ground, with perturbation
triplets as the input features, neural-network-
based perturbative NLC (NN-PNLC) algorithms
have been intensively studied recently[2]–[6]. This
kind of NLC algorithm can be trained without prior
knowledge of the fiber link parameters and can be
re-trained according to the change of link based
on a newly collected dataset[3], becoming a flexi-
ble and effective NLC solution.

However, the current NN-PNLC adopts a su-
pervised training scheme, which requires huge
training datasets (sometimes up to 220[5]) to pre-
vent over-fitting and requires accurate knowledge
of the sending data as a reference. Although
data augmentation (DA) can be used if insufficient
datasets are collected[3], it still needs to know
the exact knowledge of these insufficient datasets
and the DA itself adds the processing complex-
ity in the training process. In addition, accurately
knowing a large amount of reference data is not
easy. Without storing these data in advance,
the usual practice is to generate the reference
data according to the same rules as the transmit-
ter, which still consumes hardware resources and
may fall into possible pitfalls[14]. Therefore, de-
signing a training scheme for NN-PNLC without
knowing the transmitted data is highly desirable
for practical implementation.

In this work, to the best of our knowledge,
we propose the first self-supervised learning

(SSL) scheme for NN-PNLC. The proposed
SSL scheme is realized by designing a proxy
task[15] to automatically extract the target pertur-
bation terms from phase-conjugated unknown se-
quences. When the SSL is completed, the trained
model can be applied directly to the correspond-
ing dual-polarization (DP) system. The effective-
ness of the proposed SSL scheme is verified nu-
merically in a 32-GBaud DP-16QAM 2800-km co-
herent system and the SSL model exhibits no ob-
vious performance penalty compared with the su-
pervised model.

Self-Supervised Learning for NN-PNLC
According to the first-order perturbation theory,
with large chromatic dispersion assumption, the
intra-channel fiber nonlinear perturbation terms
for the k-th DP symbol can be approximated as[16]
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where P0, Xk and Yk, and Cm,n denote the launch
power, transmitted symbol sequences for the x-
and y-polarization, and nonlinear perturbation co-
efficients, respectively. m and n are symbol in-
dices with respect to the k-th symbol. The re-
ceived symbols can be denoted as X̂m and Ŷm.
With perturbation triplets X̂n+kX̂

∗
m+n+kX̂m+k +

Ŷn+kŶ
∗
m+n+kŶm+k as the input features, NN-

PNLC outputs the estimated perturbation terms
N̂

x/y
k,NL

[2] and can be trained by a supervised
learning scheme: by minimizing the mean square
error (MSE) between the transmitted symbols and



the received symbols after eliminating the esti-
mated perturbation terms. Take x-polarization
as an example, assuming that the linear impair-
ments have been well compensated, the equation
of MSE can be written and further derived as

MSE =
1

B

B∑
k=1

∣∣∣(X̂k − N̂x
k,NL

)
−Xk

∣∣∣2 (3a)

=
1

B

B∑
k=1

∣∣∣(X̂k −Xk

)
− N̂x

k,NL

∣∣∣2 (3b)

=
1

B

B∑
k=1

∣∣∣Nx
k,ASE +Nx

k,NL − N̂x
k,NL

∣∣∣2 (3c)

where B denotes the batch size and Nx
k,ASE de-

notes the amplified spontaneous emission (ASE)
noise. Through the derivation of Eq. (3b) to (3c)
of Eq. (3), it can be found that the MSE of NN-
PNLC mainly depends on the difference between
the reference nonlinear perturbation terms Nx

k,NL

and the estimated nonlinear perturbation terms
N̂x

k,NL. If a certain technique can be used to ex-
tract the referenceNx

k,NL from the received data,
then the restriction that the transmitted data must
be known will be lifted.

Fortunately, the phase-conjugated twin waves
(PCTW)[17] technique can help to achieve this
goal. For a long time, by sacrificing one polar-
ization (Yk = X∗

k ), the PCTW technique is of-
ten used for fiber nonlinear compensation with
simple operation X̂k + Ŷ ∗

k based on the relation
Ny

k,NL = −(Nx
k,NL)

∗. However, if we look at
PCTW from a completely opposite perspective, it
can be used as a perturbation extractor by:
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where Nk,ASE = 1
2 (N

x
k,ASE−Ny∗

k,ASE) denotes the
ASE noise after the perturbation extractor. The
results of Eq. (4) are exactly the first two terms
needed in the square calculation of Eq. (3c) so
that the calculation of MSE only needs the re-
ceived unknown data X̂k and Ŷk now and no
longer depends on the known transmitted data.

Then, if phase-conjugated sequences are tem-
porarily used for the training phase of NN-PNLC
in a DP system, the perturbation terms can be
extracted just from the received unknown data,
updating the supervised learning (SL) to self-
supervised learning (SSL). The diagram of the
proposed SSL scheme is illustrated in Fig. 1. In
addition to the triplets calculation, a proxy task is
carried out to extract the reference perturbation

Fig. 1: The diagram of the proposed SSL for NN-PNLC.

terms Nx
k,ext from X̂k and Ŷk according to Eq. (4).

The NN structure is similar to the one in[2] with an
input layer, 2 dense layers with 2 and 10 neurons
followed by Leaky ReLU activation function, re-
spectively, and one dense layer outputs the real
and imaginary parts of the estimated perturba-
tion terms N̂x

k,NL. Finally, MSE is calculated with
1
B

∑B
k=1

∣∣∣Nx
k,ext − N̂x

k,NL

∣∣∣2. Finally, the NN is op-

timized by Adam with a learning rate of 1 × 10−4

and batch size of B = 1024.
To evaluate the performance of NN-PNLC with

the proposed SSL scheme (SSL-NN-PNLC) and
with the conventional SL scheme (SL-NN-PNLC),
as shown in Fig. 2 (a), we simulated a 32-GBaud
DP-16QAM coherent system. Note that at the
training stage, the transmitted symbols of the two
polarizations are phase-conjugated but unknown
at the receiver while at the implementation stage,
the transmitted symbols of the two polarizations
return to independent. The signal is pulse shaped
by a root-raised cosine (RRC) filter with a 0.01
roll-off factor and 50% pre-chromatic dispersion
compensation (CDC) is performed at the trans-
mitter DSP processing. The laser linewidth is
100 kHz and no other transceiver impairments
are considered. The signal is then transmitted
through 35 spans of 80-km standard single-mode
fiber (SSMF) with an attenuation coefficient of 0.2
dB/km, a dispersion parameter of 17 ps/nm/km,
and a nonlinear parameter of 1.3 W−1km−1. Ev-
ery span is followed by an erbium-doped-fiber
amplifier (EDFA) with a 4.5-dB noise figure. Af-
ter the coherent receiver, the obtained signal will
be processed through DSP. The DSP process of



Fig. 2: The diagram of (a) the studied numerical system, (b)
DSP process of the training stage of SSL-NN-PNLC, and (c)
DSP process of the implementation stage of SSL-NN-PNLC.

the training and implementation stage of SSL-NN-
PNLC are shown in Fig. 2 (b) and (c), respec-
tively. Both two stages contain a 50% post-CDC,
a matched filter, an adaptive equalizer, and a
module of frequency offset compensation (FOC)
and carrier phase recovery (CPR). At the train-
ing stage, SSL is enabled with the help of phase-
conjugated unknown sequences with a size of
105. After SSL is completed, the model is fixed
and can be implemented after CPR with the DP
modulation format at the implementation stage,
and 105 symbols are used to evaluate the per-
formance with Q2 = 20 log10[

√
2 erfc−1(2BER)]

where erfc−1 denotes the inverse complementary
error function and BER denotes the bit error rate.

Results and Discussion
First, the MSE evolutions of SL-NN-PNLC and
SSL-NN-PNLC both with 2097 triplets are shown
in Fig. 3 (a). Both SSL-NN-PNLC and SL-NN-
PNLC tend to converge after about 100 epochs.
Moreover, the absolute MSE value of SSL-NN-
PNLC after convergence is lower than the one
of SL-NN-PNLC. This is reasonable because the
proxy task also halves the variance of ASE noise.
Since Nx

k,ext and Nx
k,ASE + Nx

k,NL are no longer
the same, the comparison of the absolute value
of the MSE after convergence cannot indicate the
performance of the two models.

Next, Fig. 3 (b) illustrates the Q2 performance
of CDC, SL-NN-PNLC, and SSL-NN-PNLC eval-
uated with DP signals. The triplets input size of
SL-NN-PNLC and SSL-NN-PNLC are also 2097.
SSL-NN-PNLC provides about 1-dB Q2 improve-
ment compared with CDC and the optimal launch
power is improved from -1 dBm to 1 dBm, similar
to the performance of SL-NN-PNLC with only a
0.1-dB Q2 penalty. This penalty is caused by the
imperfection of the automatically extracted refer-
ence perturbation terms by the proxy task and it
is not obvious compared with the improvement.

Fig. 3: (a) The MSE evolution of SL and the proposed SSL.
(b) Performance of CDC, SL-NN-PNLC, and SSL-NN-PNLC
as a function of launch power. (c) Comparison between the

best performance as a function of the number of input triplets.

Finally, we also made a comparison between
the best Q2 performance of SL-NN-PNLC and
SSL-NN-PNLC as a function of the number of in-
put triplets. The results in Fig. 3 (c) indicate that
similar to SL-NN-PNLC, the performance of SSL-
NN-PNLC also increases with the number of in-
put triplets, just within 0.13-dB penalty compared
with SL-NN-PNLC. Above all, it is verified that
SSL-NN-PNLC is still effective in DP systems with
phase-conjugated unknown symbols in the train-
ing stage. The proposed SSL may also be ex-
tended to other learned versions of PNLC.

Conclusions
We have proposed an SSL scheme for NN-
PNLC. By temporarily changing the signal of the
two polarizations phase-conjugated at the training
stage, the reference perturbation terms can be
automatically extracted through a proxy task with-
out the knowledge of transmitted symbols. With
only a slight performance penalty compared to
SL, the proposed SSL scheme removes the re-
striction that the transmitted data must be known
during the training of NN-PNLC.
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