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Abstract ML applications present time varying requirements that should be accounted for an optimized 

deployment. We evaluate the benefits of disaggregated DC infrastructures for supporting them and 

propose a dynamic re-orchestration strategy for improved resource usage. ©2023 The Authors 

Introduction 

The popularity of Machine Learning (ML)/Artificial 

Intelligence (AI) applications to boost 

performance at all technological levels (service, 

control, management, etc.), has given rise to 

specialized DCs to host AI/ML functions [1]. Such 

applications have very intense requirements in 

terms of managed data volumes, storage space 

and CPU and GPU utilization [1, 2]. These 

requirements have a clear time varying behaviour 

as, for instance, transition from the learning 

phase, with high storage, CPU, GPU and 

memory requirements, to the inference phase, 

with lesser resource usage. Moreover, different 

types of ML algorithms have intrinsic 

requirements regarding resource usage [3]. All 

this heterogeneity makes the hosting of ML 

applications in DCs a dauting task. 

Traditional DCs, based on integrated servers, 

fall short on accommodating these requirements, 

due to the fragmentation of the computational 

resources. To overcome these limitations, the 

disaggregated DCs (DDCs) paradigm has been 

proposed [4, 5]. It consists on separating the 

computational resources into independent 

modular blades, so physical computational 

infrastructures, tailored to the needs of the 

applications, can be composed. High capacity 

and low latency networks are a must for blade-to-

blade communications, for which optical network 

technologies are envisioned. We analyse the 

benefits of DDCs to support ML applications, and 

present a resource re-orchestration strategy, 

exploiting the time behaviour of applications and 

the modularity of DDCs. 

DDCs in support of ML applications 

ML applications have significant and 

heterogeneous resource requirements. Broadly 

speaking, an ML application/pipeline can be 

divided into four different sub-applications [6]. 

First, a storage sub-application that stores the 

historical data and data inputs for the training of 

the ML as well as the real-time data for the 

inference of the model, which require large 

storage spaces. Then, an acceleration sub-

application, which executes the training of the 

model and processes the data inputs. This 

requires high computational power, preferably in 

the form of GPUs. Third, a file system (FS) sub-

application is responsible for storing the outputs 

of the ML model. Finally, a main sub-application 

is responsible for the coordination of all sub-

processes as well as the data treatment from the 

data storage to the acceleration and from the 

acceleration to the FS. These sub-applications 

then may be allocated to different computational 

resources, providing the necessary network 

capacity across them. 

In a traditional DC (Integrated), each of the 

sub-applications is deployed in a virtual machine 

(VM). To minimize the DC network (DCN) 

utilization, these VMs should be deployed into a 

single server. However, due to resource 

fragmentation, sub-applications may be forced to 

be spread over different servers/racks. This 

requires to plan extra physical computational 

resources. In scenarios with limited server units, 

this increases the chances of application blocking 

due to insufficient resources. The network usage 

may also increase, thus requiring more resources 

to be planned, or a higher connection blocking. 

In a DDC, due to the modularity of blades, an 

ML application may benefit from being deployed 

as a single VM over a unique composed server, 

exploiting resources available over multiple 

blades [7]. Then, the computational resource 

saving is two-fold: first, resource fragmentation is 

minimized, so ML applications are consuming the 

strictly requested resources, lowering the 

hardware that needs to be planned; second, 

since all the functionalities of the application are 

deployed as a single VM, there are some 

computational resources that can be shared 

across sub-applications, such as CPU cores, 

further reducing the resource footprint. However, 

resource disaggregation requires blade-to-blade 

interconnection, namely between employed CPU 

blades and the rest. This may increase the 

required network capacity at the DCN. 

We consider here a DDC in which resources 
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are split in racks, with each rack having a set of 

blades of each type of computational resource, 

namely, CPUs, GPUs, memory (MEM), hard disk 

drive (HDD) and solid-state drive (SSD) (Fig. 1). 

We assume two types of storage since different 

types of ML applications have heterogeneous 

needs on data volume and access rate. All the 

blades have interfaces that allow them to connect 

to an optoelectronic top-of-the-rack (ToR) switch 

that performs traffic aggregation. Due to the 

different capacity requirements posed by the 

communication with HDD blades, which require a 

less stringent performance, ToRs interconnect 

with each other via either an optically or 

electrically switched DCN; blades have interfaces 

towards the optical one (CPU, GPU, MEM, SDD) 

or the electrical one (CPU, HDD). 

We employ the following strategy for initial 

application provisioning. The joint resource 

requirement of all sub-applications is calculated. 

Then, for each type of required resource, blades 

with free capacity are found. A blade 

consolidation strategy is used to minimize the 

number of blades, which impacts on the number 

of computational resources to be planned and the 

network connections between them. For blade 

interconnection, the connection between CPU 

and GPU, MEM and SSD exploits the optical 

DCN. For the interconnection of CPU and HDD 

blades, the electronic DCN fabric is used. 

In addition, to further reduce the resource 

footprint of ML applications, the modularity of 

DDCs is exploited, which allows to down-scale 

the allocated resources when applications 

transition to inference. In this phase, applications 

are reallocated following the same stated 

principles as before, considering the total amount 

of resources required for the inference of the 

trained models, which pose much lower 

computational and networking requirements. 

Performance evaluation 

We analyse here the benefits of the modularity of 

DDCs in terms of infrastructure resources to be 

planned. The integrated DCs case is used for 

benchmarking. We also analyse the benefits of 

dynamic resource re-orchestration. A DDC with 

constrained capacity of computational resources 

and unbounded networking ones is assumed. 

This allows to analyse the amount of network 

resources needed to exploit at maximum the 

computational ones. 

We consider a DDC cluster of 8 racks, each 

hosting 10 GPU blades at 10 GPUs, 20 CPU 

blades at 20 cores, 20 MEM blades at 128 GB, 

10 HDD blades at 12 TB and 20 SSD blades at 6 

TB. For the DCN, we consider the afore-

mentioned multi-technology DCN, unbounded in 

terms of blade interface capacity and number of 

optical ports at ToRs, although a 400 Gb/s 

capacity per port is considered. For the integrated 

DC case, the equivalent number of computational 

resources is hosted per rack in the form of CPU 

and GPU servers, namely, 10 GPU servers with 

(CPU, GPU, MEM, SSD) = (10, 20, 128 GB, 6 TB) 

and 10 CPU servers with (CPU, MEM, HDD, 

SSD) = (10, 128 GB, 12 TB, 6 TB). All servers are 

connected to the ToR, which are then 

interconnected by an optical DCN. Optical ports 

at ToRs work here at 40 Gb/s to account for the 

difference in network requirements compared to 

blade-to-blade communications. 

We consider an exponentially distributed 

arrival rate (λ) of ML applications. Their duration 

follows a uniform distribution for the two phases, 

training and inference, with HT denoting the 

average application duration. We also consider 

three types of ML applications in equal share, 

reinforcement learning (RL), unsupervised (Un.) 

and semi-supervised (Semi.), which impose 

different resource requirements [3, 4]. Tab. 1 

depicts the resource requirements for the training 
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Fig. 1: DDC infrastructure with multi-technology DCN. 

Tab. 1: Resource profile of the considered ML applications 

Type 

Resource profile (CPU cores, GPUs, MEM (GB), Storage (GB)) 

Storage sub-app Main sub-app Acc. sub-app FS sub-app 

Training Inference Training Inference Training Inference Training Inference 

RL 1-2, 0, 2-4, 

500-1000 

1-2, 0, 2-4, 

5-10 

2-4, 0, 2-4, 

20-40 

1-2, 0, 2-4, 

20-40 

1-2, 1-3, 2-8, 

20-40 
0, 0, 0, 0 

1-2, 0, 1-2, 

100-500 

1-2, 0, 1-2, 

5-10 

Un. 1-2, 0, 4-8, 

2000-4000 

1-2, 0, 2-4, 

20-40 

2-4, 0, 2-4, 

20-40 

1-2, 0, 2-4, 

20-40 

2-4, 3-5, 2-8, 

20-40 
0, 0, 0, 0 

1-2, 0, 2-4, 

1000-2000 

1-2, 0, 1-2, 

10-20 

Semi. 1-2, 0, 8-16, 

3000-6000 

1-2, 0, 2-4, 

30-60 

2-4, 0, 2-4, 

20-40 

1-2, 0, 2-4, 

20-40 

4-6, 5-7, 2-8, 

20-40 
0, 0, 0, 0 

1-2, 0, 2-4, 

1000-2000 

1-2, 0, 1-2, 

10-20 

 



  

and inference phases. We assume that the 

storage requirements of RL applications can be 

fulfilled with HDDs, while SSD is used for the rest. 

We consider that sub-applications need to 

communicate at 1 Gb/s and 10 Mb/s for training 

and inference phases, respectively, in regards to 

storage transfers. For the inter-blade 

communication 100 Gb/s are required between 

CPU and GPU/MEM. 

We start by depicting the percentage of 

computational resources required to support the 

applications with respect to the total considered 

computational capacity. As a representative 

resource, we focus on the GPUs. Fig. 2 depicts 

the obtained results (columns), considering 105 

application arrivals per data point for increasing 

values of λ*HT. First, it can be seen how 

disaggregated infrastructures allow for significant 

reductions on the resources that need to be 

planned (up to halve) when compared to 

integrated ones. Then, thanks to leveraging on 

the modularity of DDCs, the proposed re-

orchestration strategy is also evaluated (wR). It 

allows to even further reduce the resources 

required, thanks to re-provisioning the resources 

mapped to ML applications to match the current 

resource requirements during inference. We also 

depict the acceptance rate of applications (lines), 

considering that provisioning rejections only 

happen due to lack of computational resources. It 

can be appreciated how the acceptance rate in 

integrated infrastructures is lower, as it rapidly 

reaches the usage of the full capacity of 

computational resources. This is due to resource 

fragmentation, which does not allow to fully 

exploit all the planned capacity. On the other 

hand, DDCs increase the acceptance rate for 

almost all considered working points, special in 

the wR case, as it significantly reduces the 

number of wasted computational resources. 

Having demonstrated the benefits of DDCs, to 

complement the study, we also analyse the 

network resources required to achieve the 

aforementioned performance. In Fig. 3 

(columns), we measure for all types of blades the 

average required interface capacity for two 

representative loads, with CPU-E and -O 

referring to the interfaces of CPU blades 

connected to the electrical or optical DCN. It can 

be seen how a significant blade interface capacity 

is required, being the CPU, GPU and MEM the 

ones that require most. Considering standardized 

interface capacities, up to 400 Gb/s are required 

for lower loads while these rise up to 1 Tb/s for 

higher loads. These requirements are lowered by 

around a 50% factor if re-orchestration is 

employed, thanks to the lower number of blades 

communicating with each other. Fig. 3 (lines) also 

depicts for both DDC scenarios the number of 

required outgoing optical ports from ToRs to the 

optical DCN. Same conclusions hold here, the 

wR case allows to save resources thanks to the 

dynamic re-composition of ML applications. For 

completeness, let us mention that for the 

integrated case, server interface capacities of up 

to 6 Gb/s are required. This highlights that, 

although DDCs are beneficial in terms of 

computational resource usage, they impose a 

significant burden in the network, which is 

mitigated exploiting the time characteristics of 

applications and re-orchestration operations.   

Conclusions 

ML applications impose a significant burden on 

DC resources, both computational and 

networking. We have shown how their allocation 

can benefit from the modularity of the 

disaggregation paradigm and associated re-

orchestration techniques, exploiting the 

applications particular time behaviour, 

dramatically reducing the computational resource 

capacity to be planned at the infrastructure at the 

expenses of a potential higher network burden. 
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Fig. 2: Required resources and application acceptance rate. 
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Fig. 3: Required interface capacity and optical ports. 
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