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Abstract We show combined soft-failure detection, identification und localization enabled by machine 
learning using experimentally obtained optical spectra as inputs. Our VAE and GAN-based framework 
shows high F1-scores requiring only 6% of total training data while being able to identify unknown failure 
spectra with 99.81% accuracy. ©2023 The Author(s) 

Introduction 
The demand for high-speed data is growing 
exponentially in today's digital age. In such an 
interconnected world, any disruption to optical 
links will result not only in loss of data, but also in 
financial loss due to service level agreements not 
being met. In this context, the complexity and 
dynamism of optical networks is increasing, 
leading to the need to enhance network 
assurance with automated and dynamic 
techniques. Instead of relying on conservative 
design approaches, guaranteed redundancies, 
and threshold-based fault detection alarms, 
machine learning algorithms have emerged as a 
promising way to enable proactive maintenance 
of future networks [1, 2]. However, most 
machine-learning algorithms require a large 
amount of training data for reliable and accurate 
operation. To obtain such data, optical 
performance monitoring (OPM) is essential. 
Network-wide OPM is key to training, validating, 
and developing machine learning algorithms for 
fault management. This may include optical 
spectrum analyzers (OSAs) at key nodes in the 
network to extract the optical spectrum for further 
use in machine learning based frameworks. Soft 
failures, i.e. failures that progressively degrade 
the quality of transmission, can potentially evolve 
into hard failures. Dealing with soft failures is 
becoming increasingly important. In recent years, 
the community has made great efforts to find 
applicable machine learning algorithms for soft-
failure management, which includes soft-failure 
detection (SFD), identification (SFI), and 
localization (SFL). In [3], received power and 
BER are used to detect and identify a soft failure 
caused by signal overlapping, filter tightening 
(FT) or filter shifting (FS). In [4], SFD and SFI of 
EDFA aging, FS, FT and laser drift were achieved 
by adding spectral features to the inputs. In [5], 
power spectral density is used as an input feature 
for a convolutional neural network to identify 
possible failures of EDFAs, filters, and fibers. In 
[6], SFL was achieved using an artificial neural 
network fed with telemetry from software-defined 

networks. However, all these algorithms need a 
high amount of training data to achieve high 
accuracies. 

In this paper, we show for the first time soft-
failure detection, identification and localization 
together in a single framework based on 
analyzing optical spectra while working with a 
very low amount of training data. This is achieved 
by including a variational autoencoder (VAE) in a 
generative adversarial network (GAN). While a 
conventional discriminator of a GAN contains a 
single supervised branch, we extend it to a two-
branch approach with one unsupervised branch 
for unknown spectrum identification (USI) and 
one supervised branch for soft-failure 
identification based on the advanced training 
methods for GAN [7]. This enables not only the 
detection of unknown failure types but also 
provides the ability of SFI on low amounts of 
training data due to the generative nature of 
GANs. Together with the superior generation 
capabilities of VAEs over conventional 
autoencoders, the optical spectra driven VAE-
based GAN framework shows excellent 
performance in all detection and identification 
tasks given a very small amount of training data. 

Soft-Failure Management Framework 
The soft-failure management framework 
proposed here consists of 4 stages in total 
including SFD, SFI, SFL and USI and is depicted 
in Fig. 1. Autoencoders have been shown to be a 
capable mechanism for semi-supervised 
anomaly detection (e.g. [8,9]). In this work, we 
use a variational autoencoder (VAE) which differs 
from conventional autoencoders. The latent 
variables are stochastic variables instead of 
deterministic mappings due to the probabilistic 
encoder. This extends the power of the VAE 
regarding anomaly detection, since normal and 
anomalous data may have the same mean 
values but not the same variance. The stochastic 
nature of the latent space gives the opportunity to 
generate outputs from the decoder by drawing 
latent space variables from its normal distribution 



because the distribution of the latent space is 
known in contrast to conventional autoencoders. 
SFD is achieved using the described VAE by 
calculating the Euclidean distance between the 
latent space encoded input spectrum L and the 
latent space L’ of the encoded reconstructed 
spectrum. An anomaly is thus detected, if the 
Euclidean distance is much larger than 0 which 
favors this approach over other threshold-based 
reconstruction error comparison since no 
threshold optimization must be done. The 
described advantage of a VAE enables its usage 
in a generative adversarial network (GAN) for the 
generation of more realistic output spectra. GANs 
are a class of methods for learning generative 
models based on game theory [7]. The goal of a 
GAN is to train a generator network that produces 
samples from the data distribution by 
transforming vectors of noise. The discriminator 
network is trained to distinguish between a real 
input and a generated input, meaning that the 
generator learns by fooling the discriminator, 
while the discriminator is trained to identify 
generated samples. Due to this adversarial 
approach both models enhance each other. In 
this work, we use the approach from [7] to include 
an unsupervised branch and a supervised branch 
in the discriminator for USI and SFI. In Fig. 1, the 
discriminator has two output branches which are 
the lambda layer, i.e., a custom activation 
function, and the spectrum identification. First, 
the supervised model is created for 5 classes 
using a softmax activation function. Afterwards, 
an unsupervised model is created using a lambda 
layer which enables the implementation of a 
custom activation function. The layer takes the 
softmax output from the supervised model and 
calculates a normalized sum of the exponential 
inputs [7]. This means that the output from the 
lambda layer lies between 0 and 1 and thus can 
be used to distinguish between known and 

unknown samples. Both branches share their 
weights in the hidden layers, which means that 
their classification performance depends on each 
other. For the training of the framework, the 
gradient is passed through the VAE, the 
generator, which uses the decoder from the VAE, 
and the discriminator. This results in the VAE not 
only being trained for optimal reconstruction 
performance but also on separating the latent 
space in such a way that the discriminator can 
separate real from unknown samples. For SFL a 
support vector machine is used on the input 
spectrum. The framework was optimized using 
an extensive grid search spanning 80,000 
configurations. 

Experimental Dataset Generation 
For training and testing of the framework a 
dataset is generated with the experimental setup 
depicted in Fig. 1. For an in-depth description of 
the setup the reader is referred to [10]. The 
spectrum of the transmitted signal is obtained 
using an OSA with a resolution of 10 pm after the 
receiver side EDFA. The dataset is obtained 
using the transmission setup for a channel count 
of 1, 3, and 5 as well as launch powers per 
channel of -3, -2, -1, and 0 dBm. The 
experimental setup can be used to emulate 
different types of errors. To emulate an increase 
in EDFA noise, we placed a variable optical 
attenuator (VOA) at the midstage access of the 
inline EDFAs within the transmission line and 
varied the attenuation from 0.2 to 2 dB in 0.2 dB 
steps. The transmit laser for the center channel 
was varied from its center frequency by -2.5 to 
2.5 GHz in 0.5 GHz steps to emulate a laser drift. 
A power drop of the laser was created by deriving 
the laser power by -2.5 to 2.5 dBm in steps of 0.5 
dBm. The same is achieved for the loaders by 
randomly selecting a channel with the same 
magnitude in the waveshaper which performs the 

Fig. 1: Experimental setup and soft-failure management framework with failure detection, identification, and localization stages 
in combination with a generative adversarial network (GAN) for unknown spectrum identification; 𝝀: layer with a custom activation 
function, L: latent space; DAC: digital-to-analog converter, ASE: amplified-spontaneous emission, WSS: waveshaper, EDFA: 
Erbium-doped fiber amplifier, SSMF: standard single-mode fiber, OSA: optical spectrum analyzer, ADC: analog-to-digital 
converter, DSP: digital signal processing. 



noise shaping of the loaders. Two types of filter 
failures were generated: filter tightening and filter 
shift. For filter tightening, the waveshaper was 
used to narrow the channels by 1 to 5 GHz in 1 
GHz steps. Filter shifting is achieved by shifting 
the center frequency of the waveshaper from -2 
to 2 GHz in 1 GHz steps. The different failure 
types were all examined for the specified 
configurations of the transmission link. With 
repeating the measurements twice, 
approximately 800 spectra per failure type were 
recorded.  

Results and Discussion 
The results for the soft failure management 
capabilities are summarized in Table 1 and Fig. 
2. Assuming all training data being available to 
the framework, the VAE achieves an F1-score of 
0.9941 for the SFD, the SFI stage achieves an 
F1-score of 0.9820, the SVM localizes the EDFA 
failures, and the laser power drop with an F1-
score of 0.9916. The USI achieves an F1-score 
of 0.9912 while a comparable approach using 
DBSCAN for determination of unknown failures 
achieves 0.8352. To show the extended 
capabilities of the framework, we reduce the 
number of training samples per failure. In Fig. 2, 
the maximum achieved F1-scores of the 4 stages 
are summarized over the percentage of total 
training data being available to the algorithms. It 
has to be noted, that the remaining part of the 
dataset is used as the (unseen) test data. It can 
be seen that the SFD F1-score is always high, 
even with a low amount of training data. This is 
because the VAE is trained on non-faulty data 
only and the discrepancy between a faulty 
spectrum and a non-faulty spectrum are 
distinctive. The USI is also not strongly 
dependent on the available training data size 
since the GAN is highly fitted to known spectra 
and generates its own training data for the 
unknown spectra. For SFI, an F1-score above 0.9 
can be reached with only 3% of the total training 
data reaching up to 0.97 for 6% and above. Only 
the SFL suffers from a lower number of available 
training data, since the SVM as a supervised 
learning algorithm needs a high amount of 

training data being available. The SVM 
approaches an F1-score of 0.8 with 8% of the 
total training data.  

Conclusion 
We have shown a high-performance soft failure 
management framework including a VAE-based 
GAN for soft-failure detection and identification 
as well as unknown failure spectrum identification 
running on optical spectra as inputs. Also, a 
highly accurate localization algorithm is included 
in the framework. Comparing our approach to the 
literature, we can state, that our soft-failure 
identification performance is comparable to the 
state of the art with an F1-score of 0.97, however 
requiring only 6% of the total training data being 
available. Summarizing, our optical spectrum 
driven framework combines all parts of the soft 
failure management in a single framework with 
high prediction accuracies. 
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Fig. 2: Maximum F1-score for the different soft failure 
management stages over the percentage of used training 
data from the total number of training data.  

Tab. 1: Results and comparison. 

Literature 
Task 

OPM Data ML-Algorithm 
SFD 
Acc. 

SFI Acc. 
SFL 
Acc. SFD SFI SFL 

[4] ✓ ✓  Rx power, BER SVM 99.06% 99.55%  

[5]  ✓  PSD CNN  
Up to 
100% 

 

[6]   ✓ 
Tx Power, 

OSNR 
ANN   

Up to 
100% 

Here: ✓ ✓ ✓ 
Optical 

spectrum 
VAE-GAN + 

SVM 
99.72% 98.21% 99.23% 
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