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Abstract In this paper, we show how multiclass classifiers based on supervised learning can be used 

for identifying the root cause of performance degradations observed in a production optical network. 
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Introduction 

To ensure that the network operates continuously 

and to maintain the desired level of quality of 

service (QoS), it is imperative that network faults 

are resolved as quickly as possible. Fault 

management methods based on machine 

learning (ML) have been explored extensively in 

the last years to serve this purpose [1-16].  

The identification and localization of failures 

through a smart fault analysis system can lead to 

preventive maintenance and fast network 

recovery. Currently, fault management methods 

rely on predefined thresholds to detect anomalies 

and human expertise to determine fault 

resolution [3,4]. A threshold-based system that is 

covering the entire network is not trivial to 

establish since different vendors provide different 

equipment and technologies for different layers of 

the network (known as heterogeneity factors). 

Moreover, a narrow threshold may result in false 

alarms, while a broad threshold can reduce fault 

detection rates [3].  

Previous threshold-based methods have high 

cost and limited scalability. Due to the 

unpredictable nature of network behavior, 

proactive measures must be implemented rather 

than reactive measures. The remaining 

challenge of failure recovery is time consuming 

and prone to human interpretation errors due to 

lack of end-to-end expertise. The goal of this 

study is to develop root cause analysers in a 

software-defined networking (SDN) context that 

translates the optical domain knowledge into 

software tools that automate the fault localization 

and identification tasks and enable the post 

failure classification study either with full, or, more 

importantly, incomplete network monitoring data. 

In this paper, we show how to identify circuit 

failures in optical networks using multiclass 

classifiers trained with field data.  

Network faults and performance degradation 

An anomaly or fault can be defined as an 

anomalous behavior that causes a system to 

deviate from its normal operating conditions or 

states in an unacceptable way [5].  

Two types of methods are used in root cause 

analysis (RCA): knowledge-based models and 

data-driven models. Knowledge-based methods 

try to formalize the extensive knowledge of the 

domain expert into a set of rules [4]. Data-driven 

models, also known as data mining methods, can 

extract unknown useful information from a very 

large volume of data [6]. 

The proposed pipeline for fault classification is 

shown in Fig. 1. Using labelled field data, 

supervised learning models are trained to classify 

the failure types observed in lightpaths (circuits) 

carried in an optical network. The building blocks 

are described in the following sections. 

 

Data collection and pre-processing 

The knowledge base (KB) in this study is 

 

Fig. 1: Proposed pipeline for fault classification. XGBoost: Extreme Gradient Boosting; KNN: K-Nearest Neighbors;           

GNB: Gaussian Naive Bayes; SVM: Support Vector Machine    
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composed of field data collected at 15-min 

sampling rate in a production network for 7 

months. Two sources of information were utilized 

to build the dataset: performance monitoring 

(PM) and alarm information. Topology stitching 

was performed on the raw data collected for 348 

optical tributary signals. Using only the receiver’s 

PMs as input, appropriate failure classification 

tasks can be defined to train ML models to 

classify the failure types of the circuits.  

Feature selection and data labelling 

Feature selection was performed using the 

Pearson correlation measure to find the 

relationship between the network alarms and the 

target variable. The high correction count 

seconds (HCCS) performance metric at the 

receiver was considered the target variable, as its 

value specifies a circuit's health status. Fig. 2 and 

Fig. 3 show the correlation analysis for the 

transmitter (TX) and receiver (RX) alarms, and 

path alarms, respectively. 

A rule-based method is used in the labelling 

process of our data. We considered a circuit 

faulty when it registers HCCS. The labelling 

mechanism was determined using domain 

knowledge on PMs and the relationship between 

the alarm against HCCS Pearson correlation 

graphs shown in Figures 2-3. According to the 

domain knowledge, four alarm types raised by 

network equipment, which are highly correlated 

to the HCCS value, were considered for the data 

labelling: Optical line fail (OLF), Automatic 

shutoff, Loss of signal (LOS), Backward Defect 

Identifier (BDI). During data labelling, a governing 

assumption was that the first power drop along 

the circuit is the root cause, with some exceptions 

imposed by domain experts.  

The labels that are correlated with one 

another are further clustered into five sub-

categories which constitute the final class of data 

for classification task: loss of signal at RX (LOS 

RX), loss of signal in the path (LOS Path), power 

drop in the link (Power drop), transient, and 

“Other”. The label “transient” was manually 

created for HCCS=1 cases without relevant 

alarm raised. The label “Other” indicates cases 

where the root cause is not found. Table 1 

summarizes the resulting labelled dataset.  

 
(a)                                                                                         (b) 

Fig. 2: Correlation analysis: (a) TX alarms against HCCS; (b) RX alarms against HCCS. OTU: Optical Transport Unit; GCC0: 

General Communications Channel 0; ODU: Optical Channel Data Unit; OCI: Optical Channel Interface; AIS: Alarm Indication Signal. 

 

Table 1: Train and test datasets for multiclass classification. 

 

Label 
Number of samples 

Training (70%) Test (30%) 

LOS RX 1,977 780 

LOS Path 625 266 

Power drop 7,040 3,055 

Transient 47 25 

Other 2,061 911 

Total 11,750 5,037 

 

 

 

Fig. 3: Correlation analysis of path alarms against HCCS. 



  

The 3044 (18%) samples of failures that could 

not be identified were mostly not power related or 

they were not reported by the equipment PMs. 

These failures could be polarization-related 

issues, non-power-related SNR degradation and 

other non-power related transients. 

Multiclass fault classifiers 

Four ML models, namely, Extreme Gradient 

Boosting (XGBoost), K-Nearest Neighbors 

(KNN), Gaussian Naive Bayes (GNB), and 

support vector machines (SVMs), were 

implemented for the multiclass classification task. 

The 16,787 labelled samples are forwarded to 

ML models using a train-test split ratio of 70/30 

as shown in Table 1. The class “transient” was 

excluded due to lack of samples for training, 

leaving only four classes.  

The training dataset was used to train the 

models and to determine the appropriate 

hyperparameters to be used in the models. The 

grid search method was applied to find the best 

performing combination of hyperparameters. 

Using the same methodology as in [3], the 

hyperparameters corresponding to learning rate, 

number of estimators, max depth, as well as 

gamma and C values, were optimized by testing 

over different values (0.01, 0.02, 0.03, 0.05, 

0.10), (100, 300, 500,1000), (1, 3, 5, 7), (1 x 10-3, 

1 x 10-4) and (0.1, 1, 10), respectively. 

Results 

Table 2 summarizes the main classification 

metrics of each classifier for each class of data. 

The results in Table 2 demonstrate that all the 

classifiers except GNB perform well in 

distinguishing the “power loss” class, whereas all 

models have poor results on “LOS path” class. 

From the normalized F1-score measure which 

combines the precision and recall scores of a 

model, it can be seen that the XGBoost and KNN 

classifiers exhibit superior overall performance. 

GNB has the worst performance. KNN as a 

distance-based model has relatively similar 

performance to XGBoost but at the expense of a 

longer execution time. The confusion matrix and 

the precision-recall curve for the best performing 

XGBoost model are shown in Fig. 4. 

Conclusions 

In this work, we have shown how multiclass 

classifiers trained with field data can be used to 

identify circuit failure in optical networks. The 

XGBoost model outperformed the KNN, GNB and 

SVM models with a significantly lower 

misclassification rate in failure classes. The 

ultimate goal of this research is to address the 

fault management problem in optical networks by 

using the proposed XGBoost-based failure 

identification method in concert with failure 

localization methods. 
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Table 2: Classification reports of the multiclass fault classifiers 
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Fig. 4: XGBoost model: (a) Confusion matrix; (b) Precision-recall curve. 
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